Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Biol ; 25(1): 44, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38317241

RESUMO

BACKGROUND: The androgen receptor (AR) is a tumor suppressor in estrogen receptor (ER) positive breast cancer, a role sustained in some ER negative breast cancers. Key factors dictating AR genomic activity in a breast context are largely unknown. Herein, we employ an unbiased chromatin immunoprecipitation-based proteomic technique to identify endogenous AR interacting co-regulatory proteins in ER positive and negative models of breast cancer to gain new insight into mechanisms of AR signaling in this disease. RESULTS: The DNA-binding factor GATA3 is identified and validated as a novel AR interacting protein in breast cancer cells irrespective of ER status. AR activation by the natural ligand 5α-dihydrotestosterone (DHT) increases nuclear AR-GATA3 interactions, resulting in AR-dependent enrichment of GATA3 chromatin binding at a sub-set of genomic loci. Silencing GATA3 reduces but does not prevent AR DNA binding and transactivation of genes associated with AR/GATA3 co-occupied loci, indicating a co-regulatory role for GATA3 in AR signaling. DHT-induced AR/GATA3 binding coincides with upregulation of luminal differentiation genes, including EHF and KDM4B, established master regulators of a breast epithelial cell lineage. These findings are validated in a patient-derived xenograft model of breast cancer. Interaction between AR and GATA3 is also associated with AR-mediated growth inhibition in ER positive and ER negative breast cancer. CONCLUSIONS: AR and GATA3 interact to transcriptionally regulate luminal epithelial cell differentiation in breast cancer regardless of ER status. This interaction facilitates the tumor suppressor function of AR and mechanistically explains why AR expression is associated with less proliferative, more differentiated breast tumors and better overall survival in breast cancer.


Assuntos
Neoplasias da Mama , Fator de Transcrição GATA3 , Receptores Androgênicos , Feminino , Humanos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Células Epiteliais/metabolismo , Fator de Transcrição GATA3/genética , Fator de Transcrição GATA3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Fenótipo , Proteômica , Receptores Androgênicos/genética
2.
PLoS Comput Biol ; 20(2): e1011868, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38346074

RESUMO

In comparisons between mutant and wild-type genotypes, transcriptome analysis can reveal the direct impacts of a mutation, together with the homeostatic responses of the biological system. Recent studies have highlighted that, when the effects of homozygosity for recessive mutations are studied in non-isogenic backgrounds, genes located proximal to the mutation on the same chromosome often appear over-represented among those genes identified as differentially expressed (DE). One hypothesis suggests that DE genes chromosomally linked to a mutation may not reflect functional responses to the mutation but, instead, result from an unequal distribution of expression quantitative trait loci (eQTLs) between sample groups of mutant or wild-type genotypes. This is problematic because eQTL expression differences are difficult to distinguish from genes that are DE due to functional responses to a mutation. Here we show that chromosomally co-located differentially expressed genes (CC-DEGs) are also observed in analyses of dominant mutations in heterozygotes. We define a method and a metric to quantify, in RNA-sequencing data, localised differential allelic representation (DAR) between those sample groups subjected to differential expression analysis. We show how the DAR metric can predict regions prone to eQTL-driven differential expression, and how it can improve functional enrichment analyses through gene exclusion or weighting-based approaches. Advantageously, this improved ability to identify probable eQTLs also reveals examples of CC-DEGs that are likely to be functionally related to a mutant phenotype. This supports a long-standing prediction that selection for advantageous linkage disequilibrium influences chromosome evolution. By comparing the genomes of zebrafish (Danio rerio) and medaka (Oryzias latipes), a teleost with a conserved ancestral karyotype, we find possible examples of chromosomal aggregation of CC-DEGs during evolution of the zebrafish lineage. Our method for DAR analysis requires only RNA-sequencing data, facilitating its application across new and existing datasets.


Assuntos
Locos de Características Quantitativas , Peixe-Zebra , Animais , Locos de Características Quantitativas/genética , Peixe-Zebra/genética , Perfilação da Expressão Gênica , Genótipo , RNA , Transcriptoma/genética
3.
Bone Joint Res ; 12(10): 657-666, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37844909

RESUMO

Aims: Impaired fracture repair in patients with type 2 diabetes mellitus (T2DM) is not fully understood. In this study, we aimed to characterize the local changes in gene expression (GE) associated with diabetic fracture. We used an unbiased approach to compare GE in the fracture callus of Zucker diabetic fatty (ZDF) rats relative to wild-type (WT) littermates at three weeks following femoral osteotomy. Methods: Zucker rats, WT and homozygous for leptin receptor mutation (ZDF), were fed a moderately high-fat diet to induce T2DM only in the ZDF animals. At ten weeks of age, open femoral fractures were simulated using a unilateral osteotomy stabilized with an external fixator. At three weeks post-surgery, the fractured femur from each animal was retrieved for analysis. Callus formation and the extent of healing were assessed by radiograph and histology. Bone tissue was processed for total RNA extraction and messenger RNA (mRNA) sequencing (mRNA-Seq). Results: Radiographs and histology demonstrated impaired fracture healing in ZDF rats with incomplete bony bridge formation and an influx of intramedullary inflammatory tissue. In comparison, near-complete bridging between cortices was observed in Sham WT animals. Of 13,160 genes, mRNA-Seq analysis identified 13 that were differentially expressed in ZDF rat callus, using a false discovery rate (FDR) threshold of 10%. Seven genes were upregulated with high confidence (FDR = 0.05) in ZDF fracture callus, most with known roles in inflammation. Conclusion: These findings suggest that elevated or prolonged inflammation contributes to delayed fracture healing in T2DM. The identified genes may be used as biomarkers to monitor and treat delayed fracture healing in diabetic patients.

4.
Mucosal Immunol ; 16(5): 606-623, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37321403

RESUMO

Type I regulatory (Tr1) cells are defined as FOXP3-IL-10-secreting clusters of differentiation (CD4+) T cells that contribute to immune suppression and typically express the markers LAG-3 and CD49b and other co-inhibitory receptors. These cells have not been studied in detail in the context of the resolution of acute infection in the lung. Here, we identify FOXP3- interleukin (IL)-10+ CD4+ T cells transiently accumulating in the lung parenchyma during resolution of the response to sublethal influenza A virus (IAV) infection in mice. These cells were dependent on IL-27Rα, which was required for timely recovery from IAV-induced weight loss. LAG-3 and CD49b were not generally co-expressed by FOXP3- IL-10+ CD4+ T cells in this model and four populations of these cells based on LAG-3 and CD49b co-expression were apparent [LAG-3-CD49b- (double negative), LAG-3+CD49b+ (double positive), LAG-3+CD49b- (LAG-3+), LAG-3-CD49b+ (CD49b+)]. However, each population exhibited suppressive potential consistent with the definition of Tr1 cells. Notably, differences between these populations of Tr1 cells were apparent including differential dependence on IL-10 to mediate suppression and expression of markers indicative of different activation states and terminal differentiation. Sort-transfer experiments indicated that LAG-3+ Tr1 cells exhibited the capacity to convert to double negative and double positive Tr1 cells, indicative of plasticity between these populations. Together, these data determine the features and suppressive potential of Tr1 cells in the resolution of IAV infection and identify four populations delineated by LAG-3 and CD49b, which likely correspond to different Tr1 cell activation states.

5.
Sci Rep ; 13(1): 5506, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-37016052

RESUMO

Epigenetic features such as DNA accessibility dictate transcriptional regulation in a cell type- and cell state- specific manner, and mapping this in health vs. disease in clinically relevant material is opening the door to new mechanistic insights and new targets for therapy. Assay for Transposase Accessible Chromatin Sequencing (ATAC-seq) allows chromatin accessibility profiling from low cell input, making it tractable on rare cell populations, such as regulatory T (Treg) cells. However, little is known about the compatibility of the assay with cryopreserved rare cell populations. Here we demonstrate the robustness of an ATAC-seq protocol comparing primary Treg cells recovered from fresh or cryopreserved PBMC samples, in the steady state and in response to stimulation. We extend this method to explore the feasibility of conducting simultaneous quantitation of chromatin accessibility and transcriptome from a single aliquot of 50,000 cryopreserved Treg cells. Profiling of chromatin accessibility and gene expression in parallel within the same pool of cells controls for cellular heterogeneity and is particularly beneficial when constrained by limited input material. Overall, we observed a high correlation of accessibility patterns and transcription factor dynamics between fresh and cryopreserved samples. Furthermore, highly similar transcriptomic profiles were obtained from whole cells and from the supernatants recovered from ATAC-seq reactions. We highlight the feasibility of applying these techniques to profile the epigenomic landscape of cells recovered from cryopreservation biorepositories.


Assuntos
Cromatina , Linfócitos T Reguladores , Humanos , Cromatina/genética , Leucócitos Mononucleares , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma
6.
Sci Rep ; 12(1): 17665, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271102

RESUMO

Autophagy is an intracellular recycling process that degrades harmful molecules and enables survival during starvation, with implications for diseases including dementia, cancer and atherosclerosis. Previous studies demonstrate how a limited number of transcription factors (TFs) can increase autophagy. However, this knowledge has not resulted in translation into therapy, thus, to gain understanding of more suitable targets, we utilized a systems biology approach. We induced autophagy by amino acid starvation and mTOR inhibition in HeLa, HEK 293 and SH-SY5Y cells and measured temporal gene expression using RNA-seq. We observed 456 differentially expressed genes due to starvation and 285 genes due to mTOR inhibition (PFDR < 0.05 in every cell line). Pathway analyses implicated Alzheimer's and Parkinson's diseases (PFDR ≤ 0.024 in SH-SY5Y and HeLa) and amyotrophic lateral sclerosis (ALS, PFDR < 0.05 in mTOR inhibition experiments). Differential expression of the Senataxin (SETX) target gene set was predicted to activate multiple neurodegenerative pathways (PFDR ≤ 0.04). In the SH-SY5Y cells of neuronal origin, the E2F transcription family was predicted to activate Alzheimer's disease pathway (PFDR ≤ 0.0065). These exploratory analyses suggest that SETX and E2F may mediate transcriptional regulation of autophagy and further investigations into their possible role in neuro-degeneration are warranted.


Assuntos
DNA Helicases , Enzimas Multifuncionais , RNA Helicases , Humanos , Aminoácidos , Autofagia/genética , DNA Helicases/genética , Células HEK293 , Enzimas Multifuncionais/genética , RNA Helicases/genética , Serina-Treonina Quinases TOR/metabolismo , Fatores de Transcrição/genética , Linhagem Celular Tumoral
7.
Int J Mol Sci ; 23(9)2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35562897

RESUMO

The human placenta is a rapidly developing transient organ that is key to pregnancy success. Early development of the conceptus occurs in a low oxygen environment before oxygenated maternal blood begins to flow into the placenta at ~10-12 weeks' gestation. This process is likely to substantially affect overall placental gene expression. Transcript variability underlying gene expression has yet to be profiled. In this study, accurate transcript expression profiles were identified for 84 human placental chorionic villus tissue samples collected across 6-23 weeks' gestation. Differential gene expression (DGE), differential transcript expression (DTE) and differential transcript usage (DTU) between 6-10 weeks' and 11-23 weeks' gestation groups were assessed. In total, 229 genes had significant DTE yet no significant DGE. Integration of DGE and DTE analyses found that differential expression patterns of individual transcripts were commonly masked upon aggregation to the gene-level. Of the 611 genes that exhibited DTU, 534 had no significant DGE or DTE. The four most significant DTU genes ADAM10, VMP1, GPR126, and ASAH1, were associated with hypoxia-responsive pathways. Transcript usage is a likely regulatory mechanism in early placentation. Identification of functional roles will facilitate new insight in understanding the origins of pregnancy complications.


Assuntos
Vilosidades Coriônicas , Placenta , Vilosidades Coriônicas/metabolismo , Feminino , Perfilação da Expressão Gênica , Idade Gestacional , Humanos , Placenta/metabolismo , Placentação/genética , Gravidez
8.
J Virol ; 95(24): e0059621, 2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34586867

RESUMO

Cellular factors have important roles in all facets of the flavivirus replication cycle. Deciphering viral-host protein interactions is essential for understanding the flavivirus life cycle as well as development of effective antiviral strategies. To uncover novel host factors that are co-opted by multiple flaviviruses, a CRISPR/Cas9 genome wide knockout (KO) screen was employed to identify genes required for replication of Zika virus (ZIKV). Receptor for Activated Protein C Kinase 1 (RACK1) was identified as a novel host factor required for ZIKV replication, which was confirmed via complementary experiments. Depletion of RACK1 via siRNA demonstrated that RACK1 is important for replication of a wide range of mosquito- and tick-borne flaviviruses, including West Nile Virus (WNV), Dengue Virus (DENV), Powassan Virus (POWV) and Langat Virus (LGTV) as well as the coronavirus SARS-CoV-2, but not for YFV, EBOV, VSV or HSV. Notably, flavivirus replication was only abrogated when RACK1 expression was dampened prior to infection. Utilising a non-replicative flavivirus model, we show altered morphology of viral replication factories and reduced formation of vesicle packets (VPs) in cells lacking RACK1 expression. In addition, RACK1 interacted with NS1 protein from multiple flaviviruses; a key protein for replication complex formation. Overall, these findings reveal RACK1's crucial role to the biogenesis of pan-flavivirus replication organelles. IMPORTANCE Cellular factors are critical in all facets of viral lifecycles, where overlapping interactions between the virus and host can be exploited as possible avenues for the development of antiviral therapeutics. Using a genome-wide CRISPR knockout screening approach to identify novel cellular factors important for flavivirus replication we identified RACK1 as a pro-viral host factor for both mosquito- and tick-borne flaviviruses in addition to SARS-CoV-2. Using an innovative flavivirus protein expression system, we demonstrate for the first time the impact of the loss of RACK1 on the formation of viral replication factories known as 'vesicle packets' (VPs). In addition, we show that RACK1 can interact with numerous flavivirus NS1 proteins as a potential mechanism by which VP formation can be induced by the former.


Assuntos
Sistemas CRISPR-Cas , Flavivirus/genética , Proteínas de Neoplasias/genética , Receptores de Quinase C Ativada/genética , Replicação Viral , Células A549 , Aedes , Animais , COVID-19 , Chlorocebus aethiops , Culicidae , Vírus da Dengue/genética , Estudo de Associação Genômica Ampla , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , RNA Interferente Pequeno/metabolismo , RNA Viral/metabolismo , SARS-CoV-2 , Células Vero , Vírus do Nilo Ocidental/genética , Zika virus/genética , Infecção por Zika virus/virologia
9.
Front Genet ; 12: 625466, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34135935

RESUMO

Zebrafish represent a valuable model for investigating the molecular and cellular basis of Fragile X syndrome (FXS). Reduced expression of the zebrafish FMR1 orthologous gene, fmr1, causes developmental and behavioural phenotypes related to FXS. Zebrafish homozygous for the hu2787 non-sense mutation allele of fmr1 are widely used to model FXS, although FXS-relevant phenotypes seen from morpholino antisense oligonucleotide (morpholino) suppression of fmr1 transcript translation were not observed when hu2787 was first described. The subsequent discovery of transcriptional adaptation (a form of genetic compensation), whereby mutations causing non-sense-mediated decay of transcripts can drive compensatory upregulation of homologous transcripts independent of protein feedback loops, suggested an explanation for the differences reported. We examined the whole-embryo transcriptome effects of homozygosity for fmr1 h u2787 at 2 days post fertilisation. We observed statistically significant changes in expression of a number of gene transcripts, but none from genes showing sequence homology to fmr1. Enrichment testing of differentially expressed genes implied effects on lysosome function and glycosphingolipid biosynthesis. The majority of the differentially expressed genes are located, like fmr1, on Chromosome 14. Quantitative PCR tests did not support that this was artefactual due to changes in relative chromosome abundance. Enrichment testing of the "leading edge" differentially expressed genes from Chromosome 14 revealed that their co-location on this chromosome may be associated with roles in brain development and function. The differential expression of functionally related genes due to mutation of fmr1, and located on the same chromosome as fmr1, is consistent with R.A. Fisher's assertion that the selective advantage of co-segregation of particular combinations of alleles of genes will favour, during evolution, chromosomal rearrangements that place them in linkage disequilibrium on the same chromosome. However, we cannot exclude that the apparent differential expression of genes on Chromosome 14 genes was, (if only in part), caused by differences between the expression of alleles of genes unrelated to the effects of the fmr1 h u2787 mutation and made manifest due to the limited, but non-zero, allelic diversity between the genotypes compared.

10.
BMC Genomics ; 22(1): 211, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33761877

RESUMO

BACKGROUND: Early-onset familial Alzheimer's disease (EOfAD) is promoted by dominant mutations, enabling the study of Alzheimer's disease (AD) pathogenic mechanisms through generation of EOfAD-like mutations in animal models. In a previous study, we generated an EOfAD-like mutation, psen1Q96_K97del, in zebrafish and performed transcriptome analysis comparing entire brains from 6-month-old wild type and heterozygous mutant fish. We identified predicted effects on mitochondrial function and endolysosomal acidification. Here we aimed to determine whether similar effects occur in 7 day post fertilization (dpf) zebrafish larvae that might be exploited in screening of chemical libraries to find ameliorative drugs. RESULTS: We generated clutches of wild type and heterozygous psen1Q96_K97del 7 dpf larvae using a paired-mating strategy to reduce extraneous genetic variation before performing a comparative transcriptome analysis. We identified 228 differentially expressed genes and performed various bioinformatics analyses to predict cellular functions. CONCLUSIONS: Our analyses predicted a significant effect on oxidative phosphorylation, consistent with our earlier observations of predicted effects on ATP synthesis in adult heterozygous psen1Q96_K97del brains. The dysregulation of minichromosome maintenance protein complex (MCM) genes strongly contributed to predicted effects on DNA replication and the cell cycle and may explain earlier observations of genome instability due to PSEN1 mutation. The upregulation of crystallin gene expression may be a response to defective activity of mutant Psen1 protein in endolysosomal acidification. Genes related to extracellular matrix (ECM) were downregulated, consistent with previous studies of EOfAD mutant iPSC neurons and postmortem late onset AD brains. Also, changes in expression of genes controlling iron ion transport were observed without identifiable changes in the prevalence of transcripts containing iron responsive elements (IREs) in their 3' untranslated regions (UTRs). These changes may, therefore, predispose to the apparent iron dyshomeostasis previously observed in 6-month-old heterozygous psen1Q96_K97del EOfAD-like mutant brains.


Assuntos
Doença de Alzheimer , Animais , Matriz Extracelular/metabolismo , Perfilação da Expressão Gênica , Homeostase , Ferro , Larva/metabolismo , Mutação , Fosforilação Oxidativa , Presenilina-1/genética , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
11.
J Exp Med ; 217(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32289156

RESUMO

Current immunotherapies involving CD8+ T cell responses show remarkable promise, but their efficacy in many solid tumors is limited, in part due to the low frequency of tumor-specific T cells in the tumor microenvironment (TME). Here, we identified a role for host atypical chemokine receptor 4 (ACKR4) in controlling intratumor T cell accumulation and activation. In the absence of ACKR4, an increase in intratumor CD8+ T cells inhibited tumor growth, and nonhematopoietic ACKR4 expression was critical. We show that ACKR4 inhibited CD103+ dendritic cell retention in tumors through regulation of the intratumor abundance of CCL21. In addition, preclinical studies indicate that ACKR4 and CCL21 are potential therapeutic targets to enhance responsiveness to immune checkpoint blockade or T cell costimulation.


Assuntos
Quimiocina CCL21/metabolismo , Imunidade , Neoplasias/imunologia , Receptores CCR/metabolismo , Animais , Antígenos CD/metabolismo , Linfócitos T CD8-Positivos/imunologia , Proliferação de Células , Células Dendríticas/imunologia , Modelos Animais de Doenças , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Cadeias alfa de Integrinas/metabolismo , Camundongos Endogâmicos C57BL , Metástase Neoplásica , Neoplasias/genética , Células Estromais/metabolismo , Análise de Sobrevida
12.
Sci Total Environ ; 727: 138698, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32330727

RESUMO

In Earth's near-surface environments, gold biogeochemical cycling involves gold dissolution and precipitation processes, which are partly attributed to bacteria. These biogeochemical processes as well as abrasion (via physical transport) are known to act upon gold particles, thereby resulting in particle transformation including the development of pure secondary gold and altered morphology, respectively. While previous studies have inferred gold biogeochemical cycling from gold particles obtained from natural environments, little is known about how metal contamination in an environment could impact this cycle. Therefore, this study aims to infer how potentially toxic metal contaminants could affect the structure and chemistry of gold particles and therefore the biogeochemical cycling of gold. In doing so, river sediments and gold particles from the De Kaap Valley, South Africa, were analysed using both microanalytical and molecular techniques. Of the metal contaminants detected in the sediment, mercury can chemically interact with gold particles thereby directly altering particle morphology and "erasing" textural evidence indicative of particle transformation. Other metal contaminants (including mercury) indirectly affect gold cycling by exerting a selective pressure on bacteria living on the surface of gold particles. Particles harbouring gold-tolerant bacteria with diverse metal resistant genes, such as Arthrobacter sp. and Pseudomonas sp., contained nearly two times more secondary gold relative to particles harbouring bacteria with less gold-tolerance. In conclusion, metal contaminants can have a direct or indirect effect on gold biogeochemical cycling in natural environments impacted by anthropogenic activity.


Assuntos
Ouro , Mercúrio/análise , Bactérias , Sedimentos Geológicos , Rios , África do Sul
13.
Behav Brain Res ; 383: 112501, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-31987935

RESUMO

The known effects of aging on the brain and behavior include impaired cognition, increases in anxiety and depressive-like behaviors, and reduced locomotor activity. Environmental exposures and interventions also influence brain functions during aging. We investigated the effects of normal aging under controlled environmental conditions and in the absence of external interventions on locomotor activity, cognition, anxiety and depressive-like behaviors, immune function and hippocampal gene expression in C57BL/6 mice. Healthy mice at 4, 9, and 14 months of age underwent behavioral testing using an established behavioral battery, followed by cellular and molecular analysis using flow cytometry, immunohistochemistry, and quantitative PCR. We found that 14-month-old mice showed significantly reduced baseline locomotion, increased anxiety, and impaired spatial memory compared to younger counterparts. However, no significant differences were observed for depressive-like behavior in the forced-swim test. Microglia numbers in the dentate gyrus, as well as CD8+ memory T cells increased towards late middle age. Aging processes exerted a significant effect on the expression of 43 genes of interest in the hippocampus. We conclude that aging is associated with specific changes in locomotor activity, cognition, anxiety-like behaviors, neuroimmune responses and hippocampal gene expression.


Assuntos
Afeto/fisiologia , Envelhecimento/fisiologia , Comportamento Animal/fisiologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Hipocampo/metabolismo , Locomoção/fisiologia , Memória Espacial/fisiologia , Envelhecimento/genética , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Ansiedade/psicologia , Encéfalo/imunologia , Encéfalo/metabolismo , Encéfalo/patologia , Linfócitos T CD8-Positivos/imunologia , Giro Denteado/patologia , Depressão/psicologia , Feminino , Expressão Gênica , Memória Imunológica/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/patologia , Neuroimunomodulação/imunologia , Neuroimunomodulação/fisiologia
14.
Bioinformatics ; 36(8): 2587-2588, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31841127

RESUMO

MOTIVATION: High throughput next generation sequencing (NGS) has become exceedingly cheap, facilitating studies to be undertaken containing large sample numbers. Quality control (QC) is an essential stage during analytic pipelines and the outputs of popular bioinformatics tools such as FastQC and Picard can provide information on individual samples. Although these tools provide considerable power when carrying out QC, large sample numbers can make inspection of all samples and identification of systemic bias a challenge. RESULTS: We present ngsReports, an R package designed for the management and visualization of NGS reports from within an R environment. The available methods allow direct import into R of FastQC reports along with outputs from other tools. Visualization can be carried out across many samples using default, highly customizable plots with options to perform hierarchical clustering to quickly identify outlier libraries. Moreover, these can be displayed in an interactive shiny app or HTML report for ease of analysis. AVAILABILITY AND IMPLEMENTATION: The ngsReports package is available on Bioconductor and the GUI shiny app is available at https://github.com/UofABioinformaticsHub/shinyNgsreports. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Software , Viés , Controle de Qualidade
15.
Cogn Affect Behav Neurosci ; 19(5): 1143-1169, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31463713

RESUMO

Physical exercise (PE) and environmental enrichment (EE) have consistently been shown to modulate behavior and neurobiological mechanisms. The current literature lacks evidence to confirm the relationship between PE and EE, if any, and whether short-term treatment with PE, EE, or PE+EE could be considered to correct age-related behavioral deficits. Three-, 8-, and 13-month-old C57BL/6 mice were assigned to either PE, EE, or PE+EE treatment groups (n = 12-16/group) for 4 weeks before behavioral testing and were compared to controls. Differential effects of the treatments on various behaviors and hippocampal gene expression were measured using an established behavioral battery and high-throughput qPCR respectively. Short-term EE enhanced locomotor activity at 9 and 14 months of age, whereas the combination of PE and EE reduced locomotor activity in the home cage at 14 months. Short-term EE also was found to reverse the age-related increase in anxiety at 9 months and spatial memory deficits at 14 months of age. Conversely, short-term PE induced spatial learning impairment and depressive-like behavior at four months but showed no effects in 9- and 14-month-old mice. PE and PE+EE, but not EE, modified the expression of several hippocampal genes at 9 months of age compared with control mice. In conclusion, short-term EE may help to alleviate age-related cognitive decline and increase in anxiety, without altering hippocampal gene expression. On the contrary, PE is detrimental at a young age for both affective-like behaviors and spatial learning and memory but showed no effects at middle and late middle age despite hippocampal gene expression alterations.


Assuntos
Envelhecimento/fisiologia , Envelhecimento/psicologia , Ansiedade/fisiopatologia , Comportamento Animal , Disfunção Cognitiva/fisiopatologia , Meio Ambiente , Hipocampo/metabolismo , Condicionamento Físico Animal , Animais , Ansiedade/genética , Cognição/fisiologia , Disfunção Cognitiva/genética , Feminino , Expressão Gênica , Masculino , Camundongos Endogâmicos C57BL
16.
Behav Brain Res ; 368: 111917, 2019 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-31004685

RESUMO

BACKGROUND: Environmental enrichment (EE) has been shown to modulate behavior and hippocampal gene expression; however, the currently available literature does not explain the differential effects that may relate to the duration of EE. AIM: To investigate the differential effects of short- and long-term EE on locomotion, anxiety-, depressive- and cognition-like behaviors, and hippocampal gene expression under physiological conditions. METHODS: We assigned either short-term or long-term intervention with respective controls to healthy C57BL/6 mice (n = 12-16/group). The short-term EE group received EE for four weeks starting at eight months of age, while the long-term EE group received EE for six months starting at three months of age. Differential effects of the duration of EE on various behaviors and hippocampal gene expression at nine months of age were measured using an established behavioral battery and high-throughput RT-qPCR, respectively. RESULTS: Both short-term and long-term EE significantly enhanced locomotion in the home cage and reduced depressive-like behavior in the forced-swim test. Long-term EE, however, reduced locomotion in the open-field test. Additionally, short-term EE reduced the mean body weight and showed anxiolytic effects in the elevated-zero maze (EZM), while these effects were lost after long-term EE. There were no effects of either short-term or long-term EE on the expression of 43 hippocampal genes of interest tested at adjusted p < 0.05. CONCLUSION: Both short and long-term EE are equally beneficial for baseline locomotor activity and depressive-like behavior. However, long-term EE affects locomotion adversely in a threatening environment and is anxiogenic.


Assuntos
Comportamento Animal/fisiologia , Interação Gene-Ambiente , Locomoção/fisiologia , Afeto/fisiologia , Animais , Ansiedade , Cognição/fisiologia , Modelos Animais de Doenças , Meio Ambiente , Comportamento Exploratório/fisiologia , Feminino , Expressão Gênica , Hipocampo/metabolismo , Hipocampo/fisiologia , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Endogâmicos C57BL
17.
Oncotarget ; 9(45): 27708-27727, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29963231

RESUMO

Control of oncogenes, including ZEB1 and ZEB2, is a major checkpoint for preventing cancer, and loss of this control contributes to many cancers, including breast cancer. Thus tumour suppressors, such as FOXP3, which is mutated or lost in many cancer tissues, play an important role in maintaining normal tissue homeostasis. Here we show for the first time that ZEB2 is selectively down regulated by FOXP3 and also by the FOXP3 induced microRNA, miR-155. Interestingly, neither FOXP3 nor miR-155 directly altered the expression of ZEB1. In breast cancer cells repression of ZEB2, independently of ZEB1, resulted in reduced expression of a mesenchymal marker, Vimentin and reduced invasion. However, there was no de-repression of E-cadherin and migration was enhanced. Small interfering RNAs targeting ZEB2 suggest that this was a direct effect of ZEB2 and not FOXP3/miR-155. In normal human mammary epithelial cells, depletion of endogenous FOXP3 resulted in de-repression of ZEB2, accompanied by upregulated expression of vimentin, increased E-cadherin expression and cell morphological changes. We suggest that FOXP3 may help maintain normal breast epithelial characteristics through regulation of ZEB2, and loss of FOXP3 in breast cancer cells results in deregulation of ZEB2.

18.
Mob DNA ; 9: 17, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29942365

RESUMO

BACKGROUND: Transposable elements (TEs) are primarily responsible for the DNA losses and gains in genome sequences that occur over time within and between species. TEs themselves evolve, with clade specific LTR/ERV, LINEs and SINEs responsible for the bulk of species-specific genomic features. Because TEs can contain regulatory motifs, they can be exapted as regulators of gene expression. While TE insertions can provide evolutionary novelty for the regulation of gene expression, their overall impact on the evolution of gene expression is unclear. Previous investigators have shown that tissue specific gene expression in amniotes is more similar across species than within species, supporting the existence of conserved developmental gene regulation. In order to understand how species-specific TE insertions might affect the evolution/conservation of gene expression, we have looked at the association of gene expression in six tissues with TE insertions in six representative amniote genomes. RESULTS: A novel bootstrapping approach has been used to minimise the conflation of effects of repeat types on gene expression. We compared the expression of orthologs containing recent TE insertions to orthologs that contained older TE insertions, and the expression of non-orthologs containing recent TE insertions to non-orthologs with older TE insertions. Both orthologs and non-orthologs showed significant differences in gene expression associated with TE insertions. TEs were found associated with species-specific changes in gene expression, and the magnitude and direction of expression changes were noteworthy. Overall, orthologs containing species-specific TEs were associated with lower gene expression, while in non-orthologs, non-species specific TEs were associated with higher gene expression. Exceptions were SINE elements in human and chicken, which had an opposite association with gene expression compared to other species. CONCLUSIONS: Our observed species-specific associations of TEs with gene expression support a role for TEs in speciation/response to selection by species. TEs do not exhibit consistent associations with gene expression and observed associations can vary depending on the age of TE insertions. Based on these observations, it would be prudent to refrain from extrapolating these and previously reported associations to distantly related species.

19.
J Comput Biol ; 25(6): 551-562, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29708779

RESUMO

Nearly half of the human genome is made up of transposable elements (TEs), and there is evidence that TEs are involved in gene regulation. In this study, we have integrated publicly available genomic, epigenetic, and transcriptomic data to investigate this in a genome-wide manner. A bootstrapping statistical method was applied to minimize confounder effects from different repeat types. Our results show that although most TE classes are primarily associated with reduced gene expression, Alu elements are associated with upregulated gene expression. Furthermore, Alu elements had the highest probability of any TE class contributing to regulatory regions of any type defined by chromatin state. This suggests a general model where clade-specific short interspersed elements (SINEs) may contribute more to gene regulation than ancient/ancestral TEs. Our exhaustive analysis has extended and updated our understanding of TEs in terms of their global impact on gene regulation and suggests that the most recently derived types of TEs, that is, clade- or species-specific SINES, have the greatest overall impact on gene regulation.


Assuntos
Elementos Alu , Elementos de DNA Transponíveis , Regulação da Expressão Gênica , Genoma Humano , Genômica/métodos , Sequências Reguladoras de Ácido Nucleico , Epigênese Genética , Humanos
20.
mBio ; 9(2)2018 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-29691335

RESUMO

Periprosthetic joint infection (PJI) is a potentially devastating complication of orthopedic joint replacement surgery. PJI with associated osteomyelitis is particularly problematic and difficult to cure. Whether viable osteocytes, the predominant cell type in mineralized bone tissue, have a role in these infections is not clear, although their involvement might contribute to the difficulty in detecting and clearing PJI. Here, using Staphylococcus aureus, the most common pathogen in PJI, we demonstrate intracellular infection of human-osteocyte-like cells in vitro and S. aureus adaptation by forming quasi-dormant small-colony variants (SCVs). Consistent patterns of host gene expression were observed between in vitro-infected osteocyte-like cultures, an ex vivo human bone infection model, and bone samples obtained from PJI patients. Finally, we confirm S. aureus infection of osteocytes in clinical cases of PJI. Our findings are consistent with osteocyte infection being a feature of human PJI and suggest that this cell type may provide a reservoir for silent or persistent infection. We suggest that elucidating the molecular/cellular mechanism(s) of osteocyte-bacterium interactions will contribute to better understanding of PJI and osteomyelitis, improved pathogen detection, and treatment.IMPORTANCE Periprosthetic joint infections (PJIs) are increasing and are recognized as one of the most common modes of failure of joint replacements. Osteomyelitis arising from PJI is challenging to treat and difficult to cure and increases patient mortality 5-fold. Staphylococcus aureus is the most common pathogen causing PJI. PJI can have subtle symptoms and lie dormant or go undiagnosed for many years, suggesting persistent bacterial infection. Osteocytes, the major bone cell type, reside in bony caves and tunnels, the lacuno-canalicular system. We report here that S. aureus can infect and reside in human osteocytes without causing cell death both experimentally and in bone samples from patients with PJI. We demonstrate that osteocytes respond to infection by the differential regulation of a large number of genes. S. aureus adapts during intracellular infection of osteocytes by adopting the quasi-dormant small-colony variant (SCV) lifestyle, which might contribute to persistent or silent infection. Our findings shed new light on the etiology of PJI and osteomyelitis in general.


Assuntos
Osteoartrite/fisiopatologia , Osteócitos/microbiologia , Infecções Relacionadas à Prótese/fisiopatologia , Infecções Estafilocócicas/fisiopatologia , Staphylococcus aureus/patogenicidade , Células Cultivadas , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...