Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 2772: 191-205, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38411815

RESUMO

The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labelling with radioactive amino acids, drug treatments, and immunoselection in various conditions and, in certain cases, predicted in silico by algorithms.


Assuntos
Algoritmos , Biossíntese de Proteínas , Aminoácidos , Transporte Biológico , Retículo Endoplasmático
2.
Front Plant Sci ; 14: 1109270, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36733717

RESUMO

The ability of plants to assemble particulate structures such as virus-like particles and protein storage organelles allows the direct bioencapsulation of recombinant proteins during the manufacturing process, which holds promise for the development of new drug delivery vehicles. Storage organelles found in plants such as protein bodies (PBs) have been successfully used as tools for accumulation and encapsulation of recombinant proteins. The fusion of sequences derived from 27-kDa-γ-zein, a major storage protein of maize, with a protein of interest leads to the incorporation of the chimeric protein into the stable and protected environment inside newly induced PBs. While this procedure has proven successful for several, but not all recombinant proteins, the aim of this study was to refine the technology by using a combination of PB-forming proteins, thereby generating multi-layered protein assemblies in N. benthamiana. We used fluorescent proteins to demonstrate that up to three proteinaceous components can be incorporated into different layers. In addition to 27-kDa-γ-zein, which is essential for PB initiation, 16-kDa-γ-zein was identified as a key element to promote the incorporation of a third zein-component into the core of the PBs. We show that a vaccine antigen could be incorporated into the matrix of multi-layered PBs, and the protein microparticles were characterized by confocal and electron microscopy as well as flow cytometry. In future, this approach will enable the generation of designer PBs that serve as drug carriers and integrate multiple components that can be functionalized in different ways.

3.
Methods Mol Biol ; 2480: 61-80, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35616857

RESUMO

Seeds are an attractive platform for the production of recombinant proteins because of their excellent storage properties and their well-developed endomembrane system, which allows accumulation of the product within specialized storage organelles. Due to the presence of these additional organelles and the resulting complexity of intracellular protein trafficking it is interesting to investigate the transport and storage of a recombinant protein within seed tissues, its interactions with endogenous reserve proteins and its impact on the ultrastructure of the endomembrane system. Possible approaches include sequential extraction procedures, subcellular fractionation and 2D as well as 3D electron microscopy techniques such as electron tomography (ET) and serial block face scanning electron microscopy (SBF-SEM), which are described and discussed in this chapter.


Assuntos
Tomografia com Microscopia Eletrônica , Sementes , Tomografia com Microscopia Eletrônica/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Varredura , Transporte Proteico , Proteínas Recombinantes/genética , Sementes/genética
4.
Front Plant Sci ; 13: 869008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432435

RESUMO

During seed development, the endoplasmic reticulum (ER) takes care of the synthesis and structural maturation of very high amounts of storage proteins in a relatively short time. The ER must thus adjust its extension and machinery to optimize this process. The major signaling mechanism to maintain ER homeostasis is the unfolded protein response (UPR). Both storage proteins that assemble into ER-connected protein bodies and those that are delivered to protein storage vacuoles stimulate the UPR, but its extent and features are specific for the different storage protein classes and even for individual members of each class. Furthermore, evidence exists for anticipatory UPR directly connected to the development of storage seed cells and for selective degradation of certain storage proteins soon after their synthesis, whose signaling details are however still largely unknown. All these events are discussed, also in the light of known features of mammalian UPR.

5.
Cells ; 11(6)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35326372

RESUMO

A distinct set of channels and transporters regulates the ion fluxes across the lysosomal membrane. Malfunctioning of these transport proteins and the resulting ionic imbalance is involved in various human diseases, such as lysosomal storage disorders, cancer, as well as metabolic and neurodegenerative diseases. As a consequence, these proteins have stimulated strong interest for their suitability as possible drug targets. A detailed functional characterization of many lysosomal channels and transporters is lacking, mainly due to technical difficulties in applying the standard patch-clamp technique to these small intracellular compartments. In this review, we focus on current methods used to unravel the functional properties of lysosomal ion channels and transporters, stressing their advantages and disadvantages and evaluating their fields of applicability.


Assuntos
Canais Iônicos , Doenças por Armazenamento dos Lisossomos , Humanos , Membranas Intracelulares/metabolismo , Canais Iônicos/metabolismo , Íons/metabolismo , Doenças por Armazenamento dos Lisossomos/metabolismo , Lisossomos/metabolismo , Técnicas de Patch-Clamp
6.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34884476

RESUMO

Prolamins constitute a unique class of seed storage proteins, present only in grasses. In the lumen of the endoplasmic reticulum (ER), prolamins form large, insoluble heteropolymers termed protein bodies (PB). In transgenic Arabidopsis (Arabidopsis thaliana) leaves, the major maize (Zea mays) prolamin, 27 kDa γ-zein (27γz), assembles into insoluble disulfide-linked polymers, as in maize endosperm, forming homotypic PB. The 16 kDa γ-zein (16γz), evolved from 27γz, instead forms disulfide-bonded dispersed electron-dense threads that enlarge the ER lumen without assembling into PB. We have investigated whether the peculiar features of 16γz are also maintained during transgenic seed development. We show that 16γz progressively changes its electron microscopy appearance during transgenic Arabidopsis embryo maturation, from dispersed threads to PB-like, compact structures. In mature seeds, 16γz and 27γz PBs appear very similar. However, when mature embryos are treated with a reducing agent, 27γz is fully solubilized, as expected, whereas 16γz remains largely insoluble also in reducing conditions and drives insolubilization of the ER chaperone BiP. These results indicate that 16γz expressed in the absence of the other zein partners forms aggregates in a storage tissue, strongly supporting the view that 16γz behaves as the unassembled subunit of a large heteropolymer, the PB, and could have evolved successfully only following the emergence of the much more structurally self-sufficient 27γz.


Assuntos
Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Zea mays/metabolismo , Zeína/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Endosperma/genética , Endosperma/crescimento & desenvolvimento , Endosperma/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Zea mays/genética , Zeína/genética
7.
Plant Physiol ; 187(3): 1428-1444, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618077

RESUMO

The rapid, massive synthesis of storage proteins that occurs during seed development stresses endoplasmic reticulum (ER) homeostasis, which activates the ER unfolded protein response (UPR). However, how different storage proteins contribute to UPR is not clear. We analyzed vegetative tissues of transgenic Arabidopsis (Arabidopsis thaliana) plants constitutively expressing the common bean (Phaseolus vulgaris) soluble vacuolar storage protein PHASEOLIN (PHSL) or maize (Zea mays) prolamins (27-kDa γ-zein or 16-kDa γ-zein) that participate in forming insoluble protein bodies in the ER. We show that 16-kDa γ-zein significantly activates the INOSITOL REQUIRING ENZYME1/BASIC LEUCINE ZIPPER 60 (bZIP60) UPR branch-but not the bZIP28 branch or autophagy-leading to induction of major UPR-controlled genes that encode folding helpers that function inside the ER. Protein blot analysis of IMMUNOGLOBULIN-BINDING PROTEIN (BIP) 1 and 2, BIP3, GLUCOSE REGULATED PROTEIN 94 (GRP94), and ER-localized DNAJ family 3A (ERDJ3A) polypeptides confirmed their higher accumulation in the plant expressing 16-kDa γ-zein. Expression of 27-kDa γ-zein significantly induced only BIP3 and ERDJ3A transcription even though an increase in GRP94 and BIP1/2 polypeptides also occurred in this plant. These results indicate a significant but weaker effect of 27-kDa γ-zein compared to 16-kDa γ-zein, which corresponds with the higher availability of 16-kDa γ-zein for BIP binding, and indicates subtle protein-specific modulations of plant UPR. None of the analyzed genes was significantly induced by PHSL or by a mutated, soluble form of 27-kDa γ-zein that traffics along the secretory pathway. Such variability in UPR induction may have influenced the evolution of storage proteins with different tissue and subcellular localization.


Assuntos
Regulação da Expressão Gênica de Plantas , Phaseolus/genética , Proteínas de Plantas/genética , Resposta a Proteínas não Dobradas , Zea mays/genética , Zeína/genética , Arabidopsis/metabolismo , Phaseolus/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Zea mays/metabolismo , Zeína/metabolismo
8.
Front Plant Sci ; 11: 609910, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33381140

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed more than 37,000 people in Italy and has caused widespread socioeconomic disruption. Urgent measures are needed to contain and control the virus, particularly diagnostic kits for detection and surveillance, therapeutics to reduce mortality among the severely affected, and vaccines to protect the remaining population. Here we discuss the potential role of plant molecular farming in the rapid and scalable supply of protein antigens as reagents and vaccine candidates, antibodies for virus detection and passive immunotherapy, other therapeutic proteins, and virus-like particles as novel vaccine platforms. We calculate the amount of infrastructure and production capacity needed to deal with predictable subsequent waves of COVID-19 in Italy by pooling expertise in plant molecular farming, epidemiology and the Italian health system. We calculate the investment required in molecular farming infrastructure that would enable us to capitalize on this technology, and provide a roadmap for the development of diagnostic reagents and biopharmaceuticals using molecular farming in plants to complement production methods based on the cultivation of microbes and mammalian cells.

9.
Curr Biol ; 29(7): 1199-1205.e4, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30880016

RESUMO

Plant developmental plasticity relies on the activities of meristems, regions where stem cells continuously produce new cells [1]. The lateral root cap (LRC) is the outermost tissue of the root meristem [1], and it is known to play an important role during root development [2-6]. In particular, it has been shown that mechanical or genetic ablation of LRC cells affect meristem size [7, 8]; however, the molecular mechanisms involved are unknown. Root meristem size and, consequently, root growth depend on the position of the transition zone (TZ), a boundary that separates dividing from differentiating cells [9, 10]. The interaction of two phytohormones, cytokinin and auxin, is fundamental in controlling the position of the TZ [9, 10]. Cytokinin via the ARABIDOPSIS RESPONSE REGULATOR 1 (ARR1) control auxin distribution within the meristem, generating an instructive auxin minimum that positions the TZ [10]. We identify a cytokinin-dependent molecular mechanism that acts in the LRC to control the position of the TZ and meristem size. We show that auxin levels within the LRC cells depends on PIN-FORMED 5 (PIN5), a cytokinin-activated intracellular transporter that pumps auxin from the cytoplasm into the endoplasmic reticulum, and on irreversible auxin conjugation mediated by the IAA-amino synthase GRETCHEN HAGEN 3.17 (GH3.17). By titrating auxin in the LRC, the PIN5 and the GH3.17 genes control auxin levels in the entire root meristem. Overall, our results indicate that the LRC serves as an auxin sink that, under the control of cytokinin, regulates meristem size and root growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/metabolismo , Citocininas/genética , Citocininas/metabolismo , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Raízes de Plantas/metabolismo
10.
J Exp Bot ; 69(21): 5013-5027, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30085182

RESUMO

In the lumen of the endoplasmic reticulum (ER), prolamin storage proteins of cereal seeds form very large, ordered heteropolymers termed protein bodies (PBs), which are insoluble unless treated with alcohol or reducing agents. In maize PBs, 16-kD γ-zein locates at the interface between a core of alcohol-soluble α-zeins and the outermost layer mainly composed of the reduced-soluble 27-kD γ-zein. 16-kD γ-zein originates from 27-kD γ-zein upon whole-genome duplication and is mainly characterized by deletions in the N-terminal domain that eliminate most Pro-rich repeats and part of the Cys residues involved in inter-chain bonds. 27-kD γ-zein also forms insoluble PBs when expressed in transgenic vegetative tissues. We show that in Arabidopsis leaves, 16-kD γ-zein assembles into disulfide-linked polymers that fail to efficiently become insoluble. Instead of forming PBs, these polymers accumulate as very unusual threads that markedly enlarge the ER lumen, resembling amyloid-like fibers. Domain-swapping between the two γ-zeins indicates that the N-terminal region of 16-kD γ-zein has a dominant effect in preventing full insolubilization. Therefore, a newly evolved prolamin has lost the ability to form homotypic PBs, and has acquired a new function in the assembly of natural, heteropolymeric PBs.


Assuntos
Retículo Endoplasmático/metabolismo , Polímeros/metabolismo , Prolaminas/metabolismo , Zea mays/genética , Zeína/genética , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Dissulfetos/metabolismo , Evolução Molecular , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Polimerização , Zea mays/metabolismo , Zeína/química , Zeína/metabolismo
11.
Methods Mol Biol ; 1691: 179-189, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29043678

RESUMO

The endoplasmic reticulum takes care of the folding, assembly, and quality control of thousands of proteins destined to the different compartments of the endomembrane system, or to be secreted in the apoplast. Here we describe how these early events in the life of all these proteins can be followed biochemically by using velocity or isopycnic ultracentrifugation, metabolic labeling with radioactive amino acids, and immunoprecipitation in various conditions.


Assuntos
Retículo Endoplasmático/metabolismo , Biossíntese de Proteínas , Processamento de Proteína Pós-Traducional , Transporte Biológico , Fracionamento Celular , Imunoprecipitação , Chaperonas Moleculares/metabolismo , Proteínas de Plantas/metabolismo , Dobramento de Proteína , Frações Subcelulares , Ultracentrifugação
13.
Front Plant Sci ; 7: 1139, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27540384

RESUMO

Protein bodies of cereal seeds consist of ordered, largely insoluble heteropolymers formed by prolamin storage proteins within the endoplasmic reticulum (ER) of developing endosperm cells. Often these structures are permanently unable to traffic along the secretory pathway, thus representing a unique example for the use of the ER as a protein storage compartment. In recent years, marked progress has been made in understanding what is needed to make a protein body and in formulating hypotheses on how protein body formation might have evolved as an efficient mechanism to store large amounts of protein during seed development, as opposed to the much more common system of seed storage protein accumulation in vacuoles. The major key evolutionary events that have generated prolamins appear to have been insertions or deletions that have disrupted the conformation of the eight-cysteine motif, a protein folding motif common to many proteins with different functions and locations along the secretory pathway, and, alternatively, the fusion between the eight-cysteine motif and domains containing additional cysteine residues.

14.
Front Plant Sci ; 7: 358, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27047526

RESUMO

Human Bone Morphogenetic Protein-2 (hBMP2) is an osteoinductive agent physiologically involved in bone remodeling processes. A commercialized recombinant hBMP2 produced in mammalian cell lines is available in different clinical applications where bone regeneration is needed, but widespread use has been hindered due to an unfavorable cost/effective ratio. Protein bodies are very large insoluble protein polymers that originate within the endoplasmic reticulum by prolamine accumulation during the cereal seed development. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body biogenesis when fused to other proteins. To produce high yield of recombinant hBMP2 active domain (ad) in stably transformed tobacco plants we have fused it to the γ-zein domain. We show that this zein-hBMP2ad fusion is retained in the endoplasmic reticulum without forming insoluble protein bodies. The accumulation levels are above 1% of total soluble leaf proteins, indicating that it could be a rapid and suitable strategy to produce hBMP2ad at affordable costs.

15.
J Exp Bot ; 67(6): 1769-81, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26748395

RESUMO

The distribution of the N-glycoproteome in integral membrane proteins of the vacuolar membrane (tonoplast) or the plasma membrane of Arabidopsis thaliana and, for further comparison, of the Rattus norvegicus lysosomal and plasma membranes, was analyzed. In silico analysis showed that potential N-glycosylation sites are much less frequent in tonoplast proteins. Biochemical analysis of Arabidopsis subcellular fractions with the lectin concanavalin A, which recognizes mainly unmodified N-glycans, or with antiserum against Golgi-modified N-glycans confirmed the in silico results and showed that, unlike the plant plasma membrane, the tonoplast is almost or totally devoid of N-glycoproteins with Golgi-modified glycans. Lysosomes share with vacuoles the hydrolytic functions and the position along the secretory pathway; however, our results indicate that their membranes had a divergent evolution. We propose that protection against the luminal hydrolases that are abundant in inner hydrolytic compartments, which seems to have been achieved in many lysosomal membrane proteins by extensive N-glycosylation of the luminal domains, has instead been obtained in the vast majority of tonoplast proteins by limiting the length of such domains.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Glicoproteínas/metabolismo , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Polissacarídeos/metabolismo , Vacúolos/metabolismo , Animais , Proteínas de Arabidopsis/química , Membrana Celular/metabolismo , Simulação por Computador , Retículo Endoplasmático/metabolismo , Glicoproteínas/química , Glicosilação , Proteínas de Membrana/metabolismo , Microssomos/metabolismo , Oligossacarídeos/metabolismo , Peptídeos/metabolismo , Proteoma/metabolismo , Ratos
16.
Front Plant Sci ; 5: 331, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25076952

RESUMO

The albumin and globulin seed storage proteins present in all plants accumulate in storage vacuoles. Prolamins, which are the major proteins in cereal seeds and are present only there, instead accumulate within the endoplasmic reticulum (ER) lumen as very large insoluble polymers termed protein bodies. Inter-chain disulfide bonds play a major role in polymerization and insolubility of many prolamins. The N-terminal domain of the maize prolamin 27 kD γ-zein is able to promote protein body formation when fused to other proteins and contains seven cysteine residues involved in inter-chain bonds. We show that progressive substitution of these amino acids with serine residues in full length γ-zein leads to similarly progressive increase in solubility and availability to traffic from the ER along the secretory pathway. Total substitution results in very efficient secretion, whereas the presence of a single cysteine is sufficient to promote partial sorting to the vacuole via a wortmannin-sensitive pathway, similar to the traffic pathway of vacuolar storage proteins. We propose that the mechanism leading to accumulation of prolamins in the ER is a further evolutionary step of the one responsible for accumulation in storage vacuoles.

18.
Int J Mol Sci ; 14(7): 13241-65, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23803657

RESUMO

Membrane anchorage was tested as a strategy to accumulate recombinant proteins in transgenic plants. Transmembrane domains of different lengths and topology were fused to the cytosolic HIV antigen p24, to promote endoplasmic reticulum (ER) residence or traffic to distal compartments of the secretory pathway in transgenic tobacco. Fusions to a domain of the maize seed storage protein γ-zein were also expressed, as a reference strategy that leads to very high stability via the formation of large polymers in the ER lumen. Although all the membrane anchored constructs were less stable compared to the zein fusions, residence at the ER membrane either as a type I fusion (where the p24 sequence is luminal) or a tail-anchored fusion (where the p24 sequence is cytosolic) resulted in much higher stability than delivery to the plasma membrane or intermediate traffic compartments. Delivery to the tonoplast was never observed. The inclusion of a thrombin cleavage site allowed for the quantitative in vitro recovery of p24 from all constructs. These results point to the ER as suitable compartment for the accumulation of membrane-anchored recombinant proteins in plants.


Assuntos
Retículo Endoplasmático , Proteína do Núcleo p24 do HIV , HIV-1/genética , Membranas Intracelulares/metabolismo , Nicotiana , Plantas Geneticamente Modificadas , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Proteína do Núcleo p24 do HIV/biossíntese , Proteína do Núcleo p24 do HIV/genética , Humanos , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Nicotiana/genética , Nicotiana/metabolismo , Zeína/biossíntese , Zeína/genética
19.
Traffic ; 14(6): 622-8, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23356396

RESUMO

Tonoplast, the membrane delimiting plant vacuoles, regulates ion, water and nutrient movement between the cytosol and the vacuolar lumen through the activity of its membrane proteins. Correct traffic of proteins from the endoplasmic reticulum (ER) to the tonoplast requires (i) approval by the ER quality control, (ii) motifs for exit from the ER and (iii) motifs that promote sorting to the tonoplast. Recent evidence suggests that this traffic follows different pathways that are protein-specific and could also reflect vacuole specialization for lytic or storage function. The routes can be distinguished based on their sensitivity to drugs such as brefeldin A and C834 as well as using mutant plants that are defective in adaptor proteins of vesicle coats, or dominant-negative mutants of Rab GTPases.


Assuntos
Proteínas de Plantas/metabolismo , Sinais Direcionadores de Proteínas , Vacúolos/metabolismo , Retículo Endoplasmático/metabolismo , Células Vegetais/metabolismo , Proteínas de Plantas/química , Transporte Proteico , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/metabolismo
20.
Front Plant Sci ; 3: 251, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23162563

RESUMO

The permeation pore of K(+) channels is formed by four copies of the pore domain. AtKCO3 is the only putative voltage-independent K(+) channel subunit of Arabidopsis thaliana with a single pore domain. KCO3-like proteins recently emerged in evolution and, to date, have been found only in the genus Arabidopsis (A. thaliana and A. lyrata). We show that the absence of KCO3 does not cause marked changes in growth under various conditions. Only under osmotic stress we observed reduced root growth of the kco3-1 null-allele line. This phenotype was complemented by expressing a KCO3 mutant with an inactive pore, indicating that the function of KCO3 under osmotic stress does not depend on its direct ability to transport ions. Constitutively overexpressed AtKCO3 or AtKCO3::GFP are efficiently sorted to the tonoplast indicating that the protein is approved by the endoplasmic reticulum quality control. However, vacuoles isolated from transgenic plants do not have significant alterations in current density. Consistently, both AtKCO3 and AtKCO3::GFP are detected as homodimers upon velocity gradient centrifugation, an assembly state that would not allow for activity. We conclude that if AtKCO3 ever functions as a K(+) channel, active tetramers are held by particularly weak interactions, are formed only in unknown specific conditions and may require partner proteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...