Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39018015

RESUMO

AIMS: Cardiac resynchronization therapy (CRT) may induce left ventricular (LV) reverse remodelling (=LV response) in patients with heart failure. Intraventricular pressure gradients can be quantified using echocardiography-derived haemodynamic forces (HDF). The aim was to evaluate the association between baseline HDF and LV response and to compare the change of HDF after CRT between LV responders and LV non-responders. METHODS AND RESULTS: The following HDF parameters were assessed: 1)apical-basal (AB) strength, 2)lateral-septal strength, 3)force vector angle, 4)systolic AB impulse, 5)systolic force vector angle. LV response was defined as a reduction of LV end-systolic volume ≥15% at six months. One hundred ninety-six patients were included (64±11 years, 122(62%) men), 136(69%) showed LV response. On multivariable logistic regression analysis, the force vector angle in the complete heart cycle (OR 1.083 (95%CI 1.018, 1.153), p=0.012) and the systolic force vector angle (OR 1.089 (95%CI 1.021, 1.161), p=0.009), both included in separate models, were independently associated with LV response. Six months after CRT, LV responders had greater AB strength, AB impulse and higher force vector angles, while LV non-responders only showed improvement in the force vector angle in the complete heart cycle. CONCLUSION: The orientation of HDF at baseline is associated with LV response to CRT. Six months after CRT, the orientation of HDF improves in LV responders and LV non-responders, while the magnitude of AB HDF only improves in LV responders.

2.
Front Cardiovasc Med ; 11: 1388171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756751

RESUMO

Background: Advancements in cardiac imaging have revolutionized our understanding of ventricular contraction. While ejection fraction (EF) is still the gold standard parameter to assess left ventricle (LV) function, strain imaging (SI) has provided valuable insights into ventricular mechanics. The lack of an integrative method including SI parameters in a single, validated formula may limit its use. Our aim was to compare different methods for evaluating global circumferential strain (GCS) and their relationship with global longitudinal strain (GLS) and EF in CMR and how the different evaluations fit in the theoretical relationship between EF and global strain. Methods: Retrospective monocenter study. Inclusion of every patient who underwent a CMR during a 15 months period with various clinical indication (congenital heart defect, myocarditis, cardiomyopathy). A minimum of three LV long-axis planes and a stack of short-axis slices covering the LV using classical steady-state free precession cine sequences. A single assessment of GLS on long axis (LAX) slices and a double assessment of GCS and EF with both short axis (SAX) and LAX slices were made by a single experienced CMR investigator. Results: GCS-SAX and GCS-LAX were correlated (r = 0.77, P < 0.001) without being interchangeable with a high reproducibility for GCS, GLS and EF. EF calculated from LAX images showed an overestimation compared to EF derived from SAX images of 7%. The correlation between calculated EF and theoretical EF derived from SI was high (r = 0.88 with EF-SAX, 0.95 with EF-LAX). Data conclusion: This study highlights the need to integrate strain imaging techniques into clinical by incorporating strain parameters into EF calculations, because it gives a deeper understanding of cardiac mechanics.

3.
Echocardiography ; 41(1): e15742, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38284680

RESUMO

BACKGROUND: The LV myocardial strain and hemodynamic forces (HDFs) are innovative markers of LV function. Aortic coarctation is safely repaired in infancy; however, mortality and morbidity remain increased in later life. The study investigated the role of left ventricular myocardial deformation and HDFs in asymptomatic patients who underwent successful aortic coarctation repair. METHODS: Clinical and echocardiographic data were analyzed from 42 repaired CoA, 32 ± 20 years after surgery, 2D echocardiographic global longitudinal strain (GLS), circumferential strain (GCS) and HDFs were determined. CoA patients were compared with 42 patients affected by blood hypertension and 84 healthy controls; all matched for age and gender. RESULTS: All groups had normal LV ejection fraction (LVEF), dimensions, and volumes. CoA patients showed a significantly higher rate of LV mass indexed (p < .001) and left atrial volumes indexed (p < .001). LV myocardial and endocardial global longitudinal and circumferential strain were decreased in CoA patients (p < .001, p < .001; p = .032 and p < .001, respectively). HDF parameters such as LV longitudinal force, LV systolic longitudinal force and LV impulse (LVim) were uniformly reduced (p = .006, p = .001, and p = .001, respectively). LV myocardial strain and HDF parameter values were independently associated with hospitalization for heart failure on univariable Cox regression analysis. CONCLUSION: Despite preserved LVEF, patients with CoA had lower LV myocardial strain and HDF parameters values, independently associated with hospitalization for heart failure.


Assuntos
Coartação Aórtica , Insuficiência Cardíaca , Disfunção Ventricular Esquerda , Adulto , Humanos , Coartação Aórtica/complicações , Coartação Aórtica/diagnóstico por imagem , Coartação Aórtica/cirurgia , Função Ventricular Esquerda , Volume Sistólico , Ecocardiografia/métodos , Hemodinâmica , Insuficiência Cardíaca/complicações
4.
Am J Physiol Heart Circ Physiol ; 326(2): H426-H432, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38099843

RESUMO

This study was designed to prospectively investigate the pattern of intraventricular hemodynamic forces (HDFs) associated with left ventricular (LV) function and remodeling in women with uncomplicated twin pregnancy. Transthoracic echocardiography was performed on 35 women (aged 35.9 ± 4.7-yr old) during gestation (T1, <14 wk; T2, 14-27 wk; T3, >28 wk) and 6-7 mo after delivery (T0). LV HDFs were computed from echocardiography long-axis data sets using a novel technique based on endocardial boundary tracking, both in apex-base (A-B) and latero-septal (L-S) directions. HDF distribution was evaluated by L-S over A-B HDF ratio (L-S:A-B HDF ratio). At T1, L-S:A-B HDF ratio was higher than in T0 (P < 0.05) indicating HDF misalignment. At T2, a slight impairment of cardiac function was then recorded with a reduction of global longitudinal strain (GLS) and left ventricular end-systolic elastance (Ees) at pressure-volume relationship analysis versus T1 (both P < 0.05). Finally, at T3, when HDF misalignment and LV contractility reduction (GLS and Ees) were all restored, a rightward shift of the end-diastolic pressure-volume relationship (EDPVR) with an increase of ventricular capacitance was documented. In twin pregnancy, HDF misalignment in the first trimester precedes the slight temporary decrease in left ventricular systolic function in the second trimester; at the third trimester, a rightward shift of the EDPVR was associated with a realignment of HDF and normalization of ventricular contractility indexes. These coordinated changes that occur in the maternal heart during twin pregnancy suggest the role of HDFs in cardiac remodeling.NEW & NOTEWORTHY These changes indicate that 1) the misalignment of hemodynamic forces (HDFs) precedes a mild reduction in systolic function in twin pregnancy and 2) the positive left ventricular (LV) response to hemodynamic stress is mainly due to an improved diastolic function with enhanced LV cavity compliance.


Assuntos
Gravidez de Gêmeos , Remodelação Ventricular , Gravidez , Humanos , Feminino , Volume Sistólico/fisiologia , Estudos de Coortes , Estudos Prospectivos , Hemodinâmica , Função Ventricular Esquerda/fisiologia
6.
Am J Cardiol ; 209: 138-145, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37866395

RESUMO

Echocardiography-derived hemodynamic forces (HDF) allow calculation of intraventricular pressure gradients from routine transthoracic echocardiographic images. The evolution of HDF after cardiac resynchronization therapy (CRT) has not been investigated in large cohorts. The aim was to assess HDF in patients with heart failure implanted with CRT versus healthy controls. HDF were assessed before and 6 months after CRT. The following HDF parameters were calculated: (1) apical-basal strength, (2) lateral-septal strength, (3) the ratio of lateral-septal to apical-basal strength ratio, and (4) the force vector angle (1 and 2 representing the magnitude of HDF, 3 and 4 representing the orientation of HDF). In the propulsive phase of systole, the apical-basal impulse and the systolic force vector angle were measured. A total of 197 patients were included (age 64 ± 11 years, 62% male), with left ventricular ejection fraction ≤35%, QRS duration ≥130 ms and left bundle branch block. The magnitude of HDF was significantly lower and the orientation was significantly worse in patients with heart failure versus healthy controls. Immediately after CRT implantation, the apical-basal impulse and systolic force vector angle were significantly increased. Six months after CRT, improvement of apical-basal strength, lateral-septal to apical-basal strength ratio and the force vector angle occurred. When CRT was deactivated at 6 months, the increase in the magnitude of apical-basal HDF remained unchanged while the systolic force vector angle worsened significantly. In conclusion, HDF in CRT recipients reflect the acute effect of CRT and the effect of left ventricular reverse remodeling on intraventricular pressure gradients. Whether HDF analysis provides incremental value over established echocardiographic parameters, remains to be determined.


Assuntos
Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca , Humanos , Masculino , Pessoa de Meia-Idade , Idoso , Feminino , Terapia de Ressincronização Cardíaca/métodos , Função Ventricular Esquerda , Volume Sistólico , Resultado do Tratamento , Ecocardiografia , Insuficiência Cardíaca/diagnóstico por imagem , Insuficiência Cardíaca/terapia , Hemodinâmica
7.
J Cardiovasc Dev Dis ; 10(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37504564

RESUMO

In recent years, analysis of kinetic energy (KE) and the rate of kinetic energy dissipation (KED) or energy loss (EL) within the cardiac chambers, obtained by cardiac imaging techniques, has gained increasing attention. Thus, there is a need to clarify the effect of physiological variables, specifically aging, on these energetic measures. To elucidate this aspect, we reviewed the literature on this topic. Overall, cardiac magnetic resonance and echocardiographic studies published so far indicate that aging affects the energetics of left and right intraventricular blood flow, although not all energy measures during the cardiac cycle seem to be affected by age in the same way. Current studies, however, have limitations. Additional large, multicenter investigations are needed to test the effect of physiological variables on intraventricular KE and KED/EL measures.

8.
ESC Heart Fail ; 10(5): 2927-2938, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37461184

RESUMO

AIMS: A novel tool for the evaluation of left ventricular (LV) systo-diastolic function through echo-derived haemodynamic forces (HDFs) has been recently proposed. The present study aimed to assess the predictive value of HDFs on (i) 6 month treatment response to sacubitril/valsartan in heart failure with reduced ejection fraction (HFrEF) patients and (ii) cardiovascular events. METHODS AND RESULTS: Eighty-nine consecutive HFrEF patients [70% males, 65 ± 9 years, LV ejection fraction (LVEF) 27 ± 7%] initiating sacubitril/valsartan underwent clinical, laboratory, ultrasound and cardiopulmonary exercise testing evaluations. Patients experiencing no adverse events and showing ≥50% reduction in plasma N-terminal pro-B-type natriuretic peptide and/or ≥10% LVEF increase over 6 months were considered responders. Patients were followed up for the composite endpoint of HF-related hospitalisation, atrial fibrillation and cardiovascular death. Forty-five (51%) patients were responders. Among baseline variables, only HDF-derived whole cardiac cycle LV strength (wLVS) was higher in responders (4.4 ± 1.3 vs. 3.6 ± 1.2; p = 0.01). wLVS was also the only independent predictor of sacubitril/valsartan response at multivariable logistic regression analysis [odds ratio 1.36; 95% confidence interval (CI) 1.10-1.67], with good accuracy at receiver operating characteristic (ROC) analysis [optimal cutpoint: ≥3.7%; area under the curve (AUC) = 0.736]. During a 33 month (23-41) median follow-up, a wLVS increase after 6 months (ΔwLVS) showed a high discrimination ability at time-dependent ROC analysis (optimal cut-off: ≥0.5%; AUC = 0.811), stratified prognosis (log-rank p < 0.0001) and remained an independent predictor for the composite endpoint (hazard ratio 0.76; 95% CI 0.61-0.95; p < 0.01), after adjusting for clinical and instrumental variables. CONCLUSIONS: HDF analysis predicts sacubitril/valsartan response and might optimise decision-making in HFrEF patients.

9.
Eur Heart J Cardiovasc Imaging ; 24(9): 1231-1240, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37131297

RESUMO

AIMS: Left ventricular (LV) blood flow is determined by intraventricular pressure gradients (IVPG). Changes in blood flow initiate remodelling and precede functional decline. Novel cardiac magnetic resonance (CMR) post-processing LV-IVPG analysis might provide a sensitive marker of LV function in dilated cardiomyopathy (DCM). Therefore, the aim of our study was to evaluate LV-IVPG patterns and their prognostic value in DCM. METHODS AND RESULTS: LV-IVPGs between apex and base were measured on standard CMR cine images in DCM patients (n = 447) from the Maastricht Cardiomyopathy registry. Major adverse cardiovascular events, including heart failure hospitalisations, life-threatening arrhythmias, and sudden/cardiac death, occurred in 66 DCM patients (15%). A temporary LV-IVPG reversal during systolic-diastolic transition, leading to a prolonged transition period or slower filling, was present in 168 patients (38%). In 14%, this led to a reversal of blood flow, which predicted outcome corrected for univariable predictors [hazard ratio (HR) = 2.57, 95% confidence interval (1.01-6.51), P = 0.047]. In patients without pressure reversal (n = 279), impaired overall LV-IVPG [HR = 0.91 (0.83-0.99), P = 0.033], systolic ejection force [HR = 0.91 (0.86-0.96), P < 0.001], and E-wave decelerative force [HR = 0.83 (0.73-0.94), P = 0.003] predicted outcome, independent of known predictors (age, sex, New York Heart Association class ≥ 3, LV ejection fraction, late gadolinium enhancement, LV-longitudinal strain, left atrium (LA) volume-index, and LA-conduit strain). CONCLUSION: Pressure reversal during systolic-diastolic transition was observed in one-third of DCM patients, and reversal of blood flow direction predicted worse outcome. In the absence of pressure reversal, lower systolic ejection force, E-wave decelerative force (end of passive LV filling), and overall LV-IVPG are powerful predictors of outcome, independent of clinical and imaging parameters.


Assuntos
Cardiomiopatia Dilatada , Humanos , Meios de Contraste , Pressão Ventricular , Imagem Cinética por Ressonância Magnética , Gadolínio , Função Ventricular Esquerda , Volume Sistólico , Espectroscopia de Ressonância Magnética , Prognóstico , Valor Preditivo dos Testes
10.
J Am Soc Echocardiogr ; 36(8): 878-887, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36931578

RESUMO

BACKGROUND: Principal strain (PS) analysis quantifies three-dimensional myocardial deformation using three-dimensional speckle-tracking echocardiography. It defines both the amplitude and direction of the principal myocardial contraction, expressed as PS, and a perpendicular secondary strain of lower intensity. The aims of this study were to apply PS analysis to describe the contractile pattern in the single right ventricle (SRV) functioning as a systemic chamber in hypoplastic left heart syndrome, compared with the normal left ventricle (LV) and right ventricle (RV), and to compare SRV function using conventional echocardiographic evaluations. METHODS: Fifty-four post-Fontan patients with hypoplastic left heart syndrome and age-matched control subjects (normal LV, n = 64; normal RV, n = 48) underwent computation of PS lines, ejection fraction (EF), end-diastolic volume indexed to body surface area, PS, secondary strain, circumferential strain, and longitudinal strain. The PS lines were compared between groups. Linear regressions with coefficient determination (R2) of strains, fractional area change, and tricuspid annular plane systolic excursion with EF and end-diastolic volume index were assessed in SRV. Additionally, the hypoplastic left heart syndrome cohort was equally divided into two groups with higher and lower EFs, followed by comparison of all parameters. RESULTS: The pattern of PS lines demonstrated a left-handed direction in the anterior free wall, a right-handed direction in the posterior free wall, and a circumferential direction in the medial wall in SRV. In contrast, in the normal LV, the principal contraction is in the circumferential direction, whereas in the normal RV, it is predominantly longitudinal. The R2 values for PS, secondary strain, and circumferential strain on EF were high (0.88, 0.72, and 0.90, respectively), whereas the R2 value for longitudinal strain was comparable with that for fractional area change (0.56 and 0.55). All parameters were independent of end-diastolic volume index. PS lines in the higher EF group showed a more circumferential orientation than in the lower EF group in SRV. CONCLUSION: PS analysis provides a unique functional map of SRV contraction. This map differs from corresponding maps of the normal LV and RV. This may be helpful in understanding the mechanisms of SRV function, although future longitudinal studies are needed.


Assuntos
Síndrome do Coração Esquerdo Hipoplásico , Disfunção Ventricular Direita , Humanos , Criança , Ventrículos do Coração/diagnóstico por imagem , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Ecocardiografia/métodos , Contração Miocárdica , Estudos Longitudinais , Função Ventricular Direita , Volume Sistólico
11.
J Clin Med ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769866

RESUMO

Transcatheter aortic valve implantation (TAVI) is the established first-line treatment for patient with severe aortic stenosis not suitable for surgery. Echocardiographic evaluation of hemodynamic forces (HDFs) is a growing field, holding the potential to early predict improvement in LV function. A prospective observational study was conducted. Transthoracic echocardiography was performed before and after TAVI. HDFs were analyzed along with traditional left ventricular (LV) function parameters. Twenty-five consecutive patients undergoing TAVI were enrolled: mean age 83 ± 5 years, 74.5% male, mean LV Ejection Fraction (LVEF) at baseline 57 ± 8%. Post-TAVI echocardiographic evaluation was performed 2.4 ± 1.06 days after the procedure. HDF amplitude parameters improved significantly after the procedure: LV Longitudinal Forces (LF) apex-base [mean difference (MD) 1.79%; 95% CI 1.07-2.5; p-value < 0.001]; LV systolic LF apex-base (MD 2.6%; 95% CI 1.57-3.7; p-value < 0.001); LV impulse (LVim) apex-base (MD 2.9%; 95% CI 1.48-4.3; p-value < 0.001). Similarly, HDFs orientation parameters improved: LVLF angle (MD 1.5°; 95% CI 0.07-2.9; p-value = 0.041); LVim angle (MD 2.16°; 95% CI 0.76-3.56; p-value = 0.004). Conversely, global longitudinal strain and LVEF did not show any significant difference before and after the procedure. Echocardiographic analysis of HDFs could help differentiate patients with LV function recovery after TAVI from patients with persistent hemodynamic dysfunction.

12.
Int J Cardiovasc Imaging ; 39(3): 565-574, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36441285

RESUMO

Left ventricular ejection function (LVEF) is not reliable in identifying subtle systolic dysfunction. Speckle Tracking (ST) plays a promising role and hemodynamic forces (HDFs) are emerging as marker of LV function. The role of LV myocardial deformation and HDFs was investigated in a cohort of patients with aortic stenosis (AS) and normal LVEF. Two hundred fifty three patients (median age 79 years, IQR 73 - 83 years) with mild (n = 87), moderate (n =77) and severe AS (n =89) were retrospectively enrolled. 2D echocardiographic global longitudinal strain (GLS), circumferential strain (GCS) and HDFs were determined. The worsening of AS was associated with raising inappropriate LV mass (p < 0.001) and declined LVEF, despite being in the normal range (p < 0.001). ST and HDFs parameters declined as the AS became severe (p<0.0001, for all). When patients were grouped based on the median of LV endocardial GLS value (> -19,9%) and LV systolic longitudinal force (LVsysLF) value (< 12,49), patients with impaired ST and lower HDFs components had increased incidence of aortic valve replacement (AVR) and worse survival (p <0.024 and p <0.037, respectively). Among ST and HDFs parameters, only LVsysLF was independently associated with AVR and all causes mortality on multivariable Cox regression analysis (HR 0.94; 95% CI 0.89-0.99; p= 0.012). Reduced values of LVsysLF were associated with AVR and reduced survival in AS patients. LVsysLF could provide useful information in the stratification of patients with AS and possibly in the choice of timing for AVR.


Assuntos
Estenose da Valva Aórtica , Disfunção Ventricular Esquerda , Humanos , Idoso , Função Ventricular Esquerda , Volume Sistólico , Prognóstico , Estudos Retrospectivos , Valor Preditivo dos Testes , Ecocardiografia , Valva Aórtica/diagnóstico por imagem
13.
Int J Cardiol ; 370: 442-444, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36395921

RESUMO

Hemodynamic force (HDF) analysis represents a novel approach to quantify intraventricular pressure gradients, responsible for blood flow. A new mathematical model allows the derivation of HDF parameters from routine transthoracic echocardiography, making this tool more accessible for clinical use. HDF analysis is considered the fluid dynamics correlate of deformation imaging and may be even more sensitive to detect mechanical abnormalities. This has the potential to add incremental clinical value, allowing earlier detection of pathology or immediate evaluation of response to treatment. In this article, the theoretical background and physiological patterns of HDF in the left ventricle are provided. In pathological situations, the HDF pattern might alter, which is illustrated with a case of ST segment elevation myocardial infarction and non-ischemic cardiomyopathy with typical left bundle branch block.


Assuntos
Ecocardiografia , Infarto do Miocárdio com Supradesnível do Segmento ST , Humanos , Ecocardiografia/métodos , Bloqueio de Ramo , Hemodinâmica , Ventrículos do Coração/diagnóstico por imagem , Infarto do Miocárdio com Supradesnível do Segmento ST/terapia
16.
Front Cardiovasc Med ; 9: 929470, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35911535

RESUMO

Background and Objective: The effect of chronic pulmonary regurgitation (PR) on right ventricular (RV) dysfunction in repaired Tetralogy of Fallot (RTOF) patients is well recognized by cardiac magnetic resonance (CMR). However, the link between RV wall motion, intracardiac flow and PR has not been established. Hemodynamic force (HDF) represents the global force exchanged between intracardiac blood volume and endocardium, measurable by 4D flow or by a novel mathematical model of wall motion. In our study, we used this novel methodology to derive HDF in a cohort of RTOF patients, exclusively using routine CMR imaging. Methods: RTOF patients and controls with CMR imaging were retrospectively included. Three-dimensional (3D) models of RV were segmented, including RV outflow tract (RVOT). Feature-tracking software (QStrain 2.0, Medis Medical Imaging Systems, Leiden, Netherlands) captured endocardial contours from long/short-axis cine and used to reconstruct RV wall motion. A global HDF vector was computed from the moving surface, then decomposed into amplitude/impulse of three directional components based on reference (Apical-to-Basal, Septal-to-Free Wall and Diaphragm-to-RVOT direction). HDF were compared and correlated against CMR and exercise stress test parameters. A subset of RTOF patients had 4D flow that was used to derive vorticity (for correlation) and HDF (for comparison against cine method). Results: 68 RTOF patients and 20 controls were included. RTOF patients had increased diastolic HDF amplitude in all three directions (p<0.05). PR% correlated with Diaphragm-RVOT HDF amplitude/impulse (r = 0.578, p<0.0001, r = 0.508, p < 0.0001, respectively). RV ejection fraction modestly correlated with global HDF amplitude (r = 0.2916, p = 0.031). VO2-max correlated with Septal-to-Free Wall HDF impulse (r = 0.536, p = 0.007). Diaphragm-to-RVOT HDF correlated with RVOT vorticity (r = 0.4997, p = 0.001). There was no significant measurement bias between Cine-derived HDF and 4D flow-derived HDF by Bland-Altman analysis. Conclusion: RTOF patients have abnormal diastolic HDF that is correlated to PR, RV function, exercise capacity and vorticity. HDF can be derived from conventional cine, and is a potential link between RV wall motion and intracardiac flow from PR in RTOF patients.

17.
Front Cardiovasc Med ; 9: 883769, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35665260

RESUMO

Background: Effects of Sacubitril/Valsartan (S/V) on left ventricular (LV) mechanics and ventricular-arterial coupling in patients with heart failure with reduced ejection fraction (HFrEF) are not completely understood. The aim of this study was to evaluate both cardiac and vascular remodeling in a group of HFrEF patients undergoing S/V therapy. Methods: Fifty HFrEF patients eligible to start a therapy with S/V were enrolled. Echocardiographic evaluation was performed at baseline and after 6 months of follow-up (FU). Beside standard evaluation, including global longitudinal strain (GLS), estimated hemodynamic forces (HDFs) and non-invasive pressure-volume curves (PV loop) were assessed using dedicated softwares. HDFs were evaluated over the entire cardiac cycle, in systole and diastole, both in apex to base (A-B) and latero-septal (L-S) directions. The distribution of LV HDFs was evaluated by L-S over A-B HDFs ratio (L-S/A-B HDFs ratio). Parameters derived from estimated PV loop curves were left ventricular end-systolic elastance (Ees), arterial elastance (Ea), and ventricular-arterial coupling (VAC). Results: At 6 months of FU indexed left ventricular end-diastolic and end-systolic volumes decreased (EDVi: 101 ± 28 mL vs. 86 ± 30 mL, p < 0.001; ESVi: 72 ± 23 mL vs. 55 ± 24 mL, p < 0.001), ejection fraction and GLS significantly improved (EF: 29 ± 6% vs. 37 ± 7%, p < 0.001; GLS: -9 ± 3% vs. -13 ± 4%, p < 0.001). A reduction of Ea (2.11 ± 0.91 mmHg/mL vs. 1.72 ± 0.44 mmHg/mL, p = 0.008) and an improvement of Ees (1.01 ± 0.37 mmHg/mL vs. 1.35 ± 0.6 mmHg/mL, p < 0.001) and VAC (2.3 ± 1.1 vs. 1.5 ± 0.7, p < 0.001) were observed. Re-alignment of HDFs occurred, with a reduction of diastolic L-S/A-B HDFs ratio [23 (20-35)% vs. 20 (11-28) %, p < 0.001]. Conclusion: S/V therapy leads to a complex phenomenon of reverse remodeling involving increased myocardial contractility, HDFs distribution improvement, and afterload reduction.

19.
Sci Rep ; 12(1): 8695, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610287

RESUMO

Recent developments on the grading of cardiac pathologies suggest flow-related metrics for a deeper evaluation of cardiac function. Blood flow evaluation employs space-time resolved cardiovascular imaging tools, possibly integrated with direct numerical simulation (DNS) of intraventricular fluid dynamics in individual patients. If a patient-specific analysis is a promising method to reproduce flow details or to assist virtual therapeutic solutions, it becomes impracticable in nearly-real-time during a routine clinical activity. At the same time, the need to determine the existence of relationships between advanced flow-related quantities of interest (QoIs) and the diagnostic metrics used in the standard clinical practice requires the adoption of techniques able to generalize evidences emerging from a finite number of single cases. In this study, we focus on the left ventricular function and use a class of reduced-order models, relying on the Polynomial Chaos Expansion (PCE) technique to learn the dynamics of selected QoIs based on a set of synthetic cases analyzed with a high-fidelity model (DNS). The selected QoIs describe the left ventricle blood transit and the kinetic energy and vorticity at the peak of diastolic filling. The PCE-based surrogate models provide straightforward approximations of these QoIs in the space of widely used diagnostic metrics embedding relevant information on left ventricle geometry and function. These surrogates are directly employable in the clinical analysis as we demonstrate by assessing their robustness against independent patient-specific cases ranging from healthy to diseased conditions. The surrogate models are used to perform global sensitivity analysis at a negligible computational cost and provide insights on the impact of each diagnostic metric on the QoIs. Results also suggest how common flow transit parameters are principally dictated by ejection fraction.


Assuntos
Benchmarking , Função Ventricular Esquerda , Ventrículos do Coração/diagnóstico por imagem , Hemodinâmica , Humanos , Modelos Cardiovasculares , Volume Sistólico/fisiologia
20.
J Clin Med ; 11(8)2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35456305

RESUMO

Background: HyperDoppler is a new echocardiographic color Doppler-based technique that can assess intracardiac flow dynamics. The aim of this study was to verify the feasibility and reproducibility of this technique in unselected patients and its capability to differentiate measures of vortex flow within the left ventricle (LV) in normal sedentary subjects, athletes, and patients with heart failure. Methods: Two hundred unselected, consecutive patients presenting at the echocardiographic laboratory, 50 normal subjects, 30 athletes, and 50 patients with chronic heart failure and LV ejection fraction <50% were enrolled. Images were acquired using a MyLab X8 echo-scanner. Area, intensity, depth, length, and kinetic energy dissipation (KED) of vortex flow were measured. Results: The HyperDoppler technique feasibility was 94.5%. According to the intraclass correlation coefficient evaluations, repeatability and reproducibility of vortex flow measures were good for vortex area (0.82, 0.85), length (0.83, 0.82), and depth (0.87, 0.84) and excellent for intensity (0.92, 0.90) and KED (0.98, 0.98). Combining different vortex flow measures, the LV flow profile of healthy sedentary individuals, athletes, and heart failure patients could be differentiated. Conclusions: HyperDoppler is a feasible, reliable, and practical technique for the assessment of LV flow dynamics and may distinguish normal subjects and patients with heart failure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA