Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e12262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34707939

RESUMO

Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which can infect several organs, especially impacting respiratory capacity. Among the extrapulmonary manifestations of COVID-19 is myocardial injury, which is associated with a high risk of mortality. Myocardial injury, caused directly or indirectly by SARS-CoV-2 infection, can be triggered by inflammatory processes that lead to damage to the heart tissue. Since one of the hallmarks of severe COVID-19 is the "cytokine storm", strategies to control inflammation caused by SARS-CoV-2 infection have been considered. Cannabinoids are known to have anti-inflammatory properties by negatively modulating the release of pro-inflammatory cytokines. Herein, we investigated the effects of the cannabinoid agonist WIN 55,212-2 (WIN) in human iPSC-derived cardiomyocytes (hiPSC-CMs) infected with SARS-CoV-2. WIN did not modify angiotensin-converting enzyme II protein levels, nor reduced viral infection and replication in hiPSC-CMs. On the other hand, WIN reduced the levels of interleukins six, eight, 18 and tumor necrosis factor-alpha (TNF-α) released by infected cells, and attenuated cytotoxic damage measured by the release of lactate dehydrogenase (LDH). Our findings suggest that cannabinoids should be further explored as a complementary therapeutic tool for reducing inflammation in COVID-19 patients.

2.
J Antimicrob Chemother ; 76(7): 1874-1885, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33880524

RESUMO

BACKGROUND: Current approaches of drug repurposing against COVID-19 have not proven overwhelmingly successful and the SARS-CoV-2 pandemic continues to cause major global mortality. SARS-CoV-2 nsp12, its RNA polymerase, shares homology in the nucleotide uptake channel with the HCV orthologue enzyme NS5B. Besides, HCV enzyme NS5A has pleiotropic activities, such as RNA binding, that are shared with various SARS-CoV-2 proteins. Thus, anti-HCV NS5B and NS5A inhibitors, like sofosbuvir and daclatasvir, respectively, could be endowed with anti-SARS-CoV-2 activity. METHODS: SARS-CoV-2-infected Vero cells, HuH-7 cells, Calu-3 cells, neural stem cells and monocytes were used to investigate the effects of daclatasvir and sofosbuvir. In silico and cell-free based assays were performed with SARS-CoV-2 RNA and nsp12 to better comprehend the mechanism of inhibition of the investigated compounds. A physiologically based pharmacokinetic model was generated to estimate daclatasvir's dose and schedule to maximize the probability of success for COVID-19. RESULTS: Daclatasvir inhibited SARS-CoV-2 replication in Vero, HuH-7 and Calu-3 cells, with potencies of 0.8, 0.6 and 1.1 µM, respectively. Although less potent than daclatasvir, sofosbuvir alone and combined with daclatasvir inhibited replication in Calu-3 cells. Sofosbuvir and daclatasvir prevented virus-induced neuronal apoptosis and release of cytokine storm-related inflammatory mediators, respectively. Sofosbuvir inhibited RNA synthesis by chain termination and daclatasvir targeted the folding of secondary RNA structures in the SARS-CoV-2 genome. Concentrations required for partial daclatasvir in vitro activity are achieved in plasma at Cmax after administration of the approved dose to humans. CONCLUSIONS: Daclatasvir, alone or in combination with sofosbuvir, at higher doses than used against HCV, may be further fostered as an anti-COVID-19 therapy.


Assuntos
COVID-19 , Preparações Farmacêuticas , Animais , Antivirais/farmacologia , Antivirais/uso terapêutico , Carbamatos , Chlorocebus aethiops , Humanos , Imidazóis , Pirrolidinas , RNA Viral , SARS-CoV-2 , Sofosbuvir/farmacologia , Valina/análogos & derivados , Células Vero
3.
PeerJ ; 9: e12595, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35036128

RESUMO

SARS-CoV-2 infects cardiac cells and causes heart dysfunction. Conditions such as myocarditis and arrhythmia have been reported in COVID-19 patients. The Sigma-1 receptor (S1R) is a ubiquitously expressed chaperone that plays a central role in cardiomyocyte function. S1R has been proposed as a therapeutic target because it may affect SARS-CoV-2 replication; however, the impact of the inhibition of S1R in human cardiomyocytes remains to be described. In this study, we investigated the consequences of S1R inhibition in iPSC-derived human cardiomyocytes (hiPSC-CM). SARS-CoV-2 infection in hiPSC-CM was productive and reduced cell survival. S1R inhibition decreased both the number of infected cells and viral particles after 48 hours. S1R inhibition also prevented the release of pro-inflammatory cytokines and cell death. Although the S1R antagonist NE-100 triggered those protective effects, it compromised cytoskeleton integrity by downregulating the expression of structural-related genes and reducing beating frequency. Our findings suggest that the detrimental effects of S1R inhibition in human cardiomyocytes' integrity may abrogate its therapeutic potential against COVID and should be carefully considered.

4.
Artif Organs ; 37(12): 1068-75, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23865470

RESUMO

The objective of our study was to investigate chondrogenesis potential of human adipose-derived mesenchymal stromal cells (MSCs), using as a positive control a human source of cartilage-derived progenitor cells (PCs). This source of PCs was recently described by our group and dwells on the surface of nasoseptal cartilage. Histological analysis using Safranin O staining and immunofluorescence for actin filaments and collagen type II was performed on three-dimensional (3D) pellet cultures. Cartilage PCs and adipose MSCs showed similarities in monolayer culture related to cell morphology and proliferation. Our 3D pellet cultures substantially reduced the actin stress and after 21 days under chondrogenic medium, we observed an increase in the pellet diameter for cartilage PCs (7.4%) and adipose MSCs (21.2%). Adipose-derived MSCs responded to chondrogenic stimulus, as seen by positive areas for collagen type II, but they were not able to recreate a mature extracellular matrix. Using semi-quantitative analysis, we observed a majority of Safranin O areas rising from blue (no stain) to orange (moderate staining) and no changes in fibroblastic morphology (P < 0.0001). For cartilage PCs, chondrogenic induction is responsible for morphological changes and a high percentage of matrix area/number of cells (P ≤ 0.0001), evaluated by computerized histomorphometry. Morphological analyses reveal that adipose-derived MSCs were not able to recreate a bioengineered cartilage. The cost of culture was reduced, as the cartilage PCs under growth-factor free medium exhibit a high score for cartilage formation compared with the induced adipose mesenchymal stromal cells (P = 0.0021). Using a pellet 3D culture, our cartilage PCs were able to produce a cartilage tissue in vitro, leading to the future development of bioengineered products.


Assuntos
Tecido Adiposo/metabolismo , Cartilagem/metabolismo , Condrócitos/metabolismo , Condrogênese , Células-Tronco Mesenquimais/metabolismo , Células-Tronco/metabolismo , Engenharia Tecidual/métodos , Citoesqueleto de Actina/metabolismo , Tecido Adiposo/citologia , Adolescente , Adulto , Cartilagem/citologia , Proliferação de Células , Forma Celular , Células Cultivadas , Colágeno Tipo II/metabolismo , Feminino , Humanos , Pessoa de Meia-Idade , Fenótipo , Fatores de Tempo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...