Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metabolites ; 13(2)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36837841

RESUMO

Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing of 11-, 14- and 15-res peptaibols produced by a marine strain of Trichoderma isolated from the ascidian Botrylloides giganteus was performed via liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Identification, based on multilocus phylogeny, revealed that our isolate belongs to the species T. endophyticum, which has never been reported in marine environments. Through genome sequencing and genome mining, 53 biosynthetic gene clusters (BGCs) were identified as being related to bioactive natural products, including two NRP-synthetases: one responsible for the biosynthesis of 11- and 14-res peptaibols, and another for the biosynthesis of 15-res. Substrate prediction, based on phylogeny of the adenylation domains in combination with molecular networking, permitted extensive annotation of the mass spectra related to two new series of 15-res peptaibols, which are referred to herein as "endophytins". The analyses of synteny revealed that the origin of the 15-module peptaibol synthetase is related to 18, 19 and 20-module peptaibol synthetases, and suggests that the loss of modules may be a mechanism used by Trichoderma species for peptaibol diversification. This study demonstrates the importance of combining genome mining techniques, mass spectrometry analysis and molecular networks for the discovery of new natural products.

2.
Nat Prod Res ; 35(10): 1644-1647, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-31140307

RESUMO

Fractionation of extracts from the culture broth of the marine-derived fungus, Paecilomyces sp. 7A22, resulted in the isolation of the harzialactone A (HA), a known compound previously isolated from fungi of marine environments. The chemical structure of HA was determined by spectroscopic analyses. Upon evaluation of HA on antileishmanial assays against Leishmania amazonensis, HA exhibited significant activity against promastigotes forms with IC50 of 5.25 µg mL-1 and moderate activity against intracellular amastigotes with IC50 of 18.18 µg mL-1. This is the first report on the antileishmanial activity of HA, and the effects of HA presented in this work suggest that this class of compounds are suitable for future biological in vitro and in vivo studies for the search of natural products with activity against Leishmania spp. Furthermore, the present results corroborate marine-derived fungi as a promising source of natural products with antiparasitic activity.


Assuntos
Antiprotozoários/farmacologia , Lactonas/farmacologia , Leishmania mexicana/efeitos dos fármacos , Paecilomyces/química , Animais , Organismos Aquáticos , Avaliação Pré-Clínica de Medicamentos/métodos , Lactonas/química , Lactonas/isolamento & purificação , Leishmaniose Cutânea/tratamento farmacológico , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Estrutura Molecular , Paecilomyces/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...