Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 26(40): 405702, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26377736

RESUMO

We present the mapping of the plasmonic properties of gold nanoparticles that are embedded in a TiO2 thin film deposited over two different substrates, glass and silicon. An improved electron energy-loss spectroscopy (EELS) imaging technique was used to extract plasmon maps with nanometre resolution. Several representative cases of randomly dispersed NPs have been examined to carefully evaluate surrounding effects on the optical response of such nanostructured material. Data were compared to analytical calculations and showed good agreement. These results validate previous structural and far-field optical results and provide a clear description of the optical phenomena that take place at a nanometre scale in these materials. They are of primary importance for enlightening the way to the fabrication of thin film materials including metallic nanostructures for photovoltaic applications.

2.
Nanotechnology ; 24(20): 205701, 2013 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-23598706

RESUMO

A study based on photoluminescence and absorption measurements as a function of temperature and pressure for PbSe nanocrystals with sizes in the range 3-13 nm reveals the influence of size quantum confinement on the observed variation. In the case of the temperature variation, the effective bandgap changes from showing a positive rate of change to showing a negative one (for a quantum dot 3 nm in diameter), which can be accounted for by incorporating a linear variation of the carrier effective masses into a simple calculation of the exciton ground state in the quantum dot. In the case of the pressure variation, we observe a clear inverse correlation between the absolute value of the pressure coefficient and the nanocrystal size, a signature of quantum size confinement, with values changing from -76 to -41 meV GPa⁻¹ for quantum dots ranging from 13 to 3 nm in diameter, respectively, clearly smaller in absolute value than the rate for bulk PbSe (-84 meV GPa⁻¹). We used again the hypothesis of a linear variation of the carrier effective masses with pressure in order to fit this experimental variation quantitatively.

3.
Langmuir ; 27(6): 2826-33, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21306172

RESUMO

Here we report on the triggering of antibacterial activity by a new type of silver nanoparticle coated with porous silica, Ag@silica, irradiated at their surface plasmon resonant frequency. The nanoparticles are able to bind readily to the surface of bacterial cells, although this does not affect bacterial growth since the silica shell largely attenuates the intrinsic toxicity of silver. However, upon simultaneous exposure to light corresponding to the absorption band of the nanoparticles, bacterial death is enhanced selectively on the irradiated zone. Because of the low power density used for the treatments, we discard thermal effects as the cause of cell killing. Instead, we propose that the increase in toxicity is due to the enhanced electromagnetic field in the proximity of the nanoparticles, which indirectly, most likely through induced photochemical reactions, is able to cause cell death.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Dióxido de Silício/farmacologia , Prata/farmacologia , Raios Ultravioleta , Antibacterianos/química , Relação Dose-Resposta a Droga , Escherichia coli/citologia , Escherichia coli/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Dióxido de Silício/química , Prata/química , Relação Estrutura-Atividade , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...