Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Invest ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38722697

RESUMO

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske Iron-Sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, they underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA-seq revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in alpha-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.

2.
Mol Metab ; 62: 101528, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35717025

RESUMO

OBJECTIVE: Mitochondrial capacity is critical to adapt the high energy demand of the heart to circadian oscillations and diseased states. Glucocorticoids regulate the circadian cycle of energy metabolism, but little is known about how circadian timing of exogenous glucocorticoid dosing directly regulates heart metabolism through cardiomyocyte-autonomous mechanisms. While chronic once-daily intake of glucocorticoids promotes metabolic stress and heart failure, we recently discovered that intermittent once-weekly dosing of exogenous glucocorticoids promoted muscle metabolism in normal and obese skeletal muscle. However, the effects of glucocorticoid intermittence on heart metabolism and heart failure remain unknown. Here we investigated the extent to which circadian time of dosing regulates the effects of the glucocorticoid prednisone in heart metabolism and function in conditions of single pulse or chronic intermittent dosing. METHODS AND RESULTS: In WT mice, we found that prednisone improved cardiac content of NAD+ and ATP with light-phase dosing (ZT0), while the effects were blocked by dark-phase dosing (ZT12). The drug effects on mitochondrial function were cardiomyocyte-autonomous, as shown by inducible cardiomyocyte-restricted glucocorticoid receptor (GR) ablation, and depended on an intact cardiomyocyte clock, as shown by inducible cardiomyocyte-restricted ablation of Brain and Muscle ARNT-like 1 (BMAL1). Conjugating time-of-dosing with chronic intermittence, we found that once-weekly prednisone improved metabolism and function in heart after myocardial injury dependent on circadian time of intake, i.e. with light-phase but not dark-phase dosing. CONCLUSIONS: Our study identifies cardiac-autonomous mechanisms through which circadian-specific intermittent dosing reconverts glucocorticoid drugs to metabolic boosters for the heart.


Assuntos
Relógios Circadianos , Insuficiência Cardíaca , Animais , Relógios Circadianos/fisiologia , Glucocorticoides/metabolismo , Glucocorticoides/farmacologia , Insuficiência Cardíaca/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Prednisona/metabolismo , Prednisona/farmacologia
3.
Sci Adv ; 8(7): eabm1189, 2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35179955

RESUMO

Exogenous glucocorticoids interact with the circadian clock, but little attention is paid to the timing of intake. We recently found that intermittent once-weekly prednisone improved nutrient oxidation in dystrophic muscle. Here, we investigated whether dosage time affected prednisone effects on muscle bioenergetics. In mice treated with once-weekly prednisone, drug dosing in the light-phase promoted nicotinamide adenine dinucleotide (NAD+) levels and mitochondrial function in wild-type muscle, while this response was lost with dark-phase dosing. These effects depended on a normal circadian clock since they were disrupted in muscle from [Brain and muscle Arnt-like protein-1 (Bmal1)]-knockout mice. The light-phase prednisone pulse promoted BMAL1-dependent glucocorticoid receptor recruitment on noncanonical targets, including Nampt and Ppargc1a [peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α)]. In mice with muscle-restricted inducible PGC1α ablation, bioenergetic stimulation by light-phase prednisone required PGC1α. These results demonstrate that glucocorticoid "chronopharmacology" for muscle bioenergetics requires an intact clock and muscle PGC1α activity.


Assuntos
Relógios Circadianos , Fatores de Transcrição ARNTL/genética , Animais , Glucocorticoides/farmacologia , Camundongos , Mitocôndrias/metabolismo , Músculos , NAD , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Prednisona
4.
Nat Metab ; 3(12): 1621-1632, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34903884

RESUMO

In mammals, circadian rhythms are entrained to the light cycle and drive daily oscillations in levels of NAD+, a cosubstrate of the class III histone deacetylase sirtuin 1 (SIRT1) that associates with clock transcription factors. Although NAD+ also participates in redox reactions, the extent to which NAD(H) couples nutrient state with circadian transcriptional cycles remains unknown. Here we show that nocturnal animals subjected to time-restricted feeding of a calorie-restricted diet (TRF-CR) only during night-time display reduced body temperature and elevated hepatic NADH during daytime. Genetic uncoupling of nutrient state from NADH redox state through transduction of the water-forming NADH oxidase from Lactobacillus brevis (LbNOX) increases daytime body temperature and blood and liver acyl-carnitines. LbNOX expression in TRF-CR mice induces oxidative gene networks controlled by brain and muscle Arnt-like protein 1 (BMAL1) and peroxisome proliferator-activated receptor alpha (PPARα) and suppresses amino acid catabolic pathways. Enzymatic analyses reveal that NADH inhibits SIRT1 in vitro, corresponding with reduced deacetylation of SIRT1 substrates during TRF-CR in vivo. Remarkably, Sirt1 liver nullizygous animals subjected to TRF-CR display persistent hypothermia even when NADH is oxidized by LbNOX. Our findings reveal that the hepatic NADH cycle links nutrient state to whole-body energetics through the rhythmic regulation of SIRT1.


Assuntos
Metabolismo Energético , Jejum , NAD/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Transcrição Gênica , Aminoácidos/metabolismo , Animais , Temperatura Corporal , Ritmo Circadiano , Dieta , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica , Fígado/metabolismo , Camundongos , Fatores de Transcrição
5.
Mol Cell ; 78(5): 835-849.e7, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32369735

RESUMO

Disrupted sleep-wake and molecular circadian rhythms are a feature of aging associated with metabolic disease and reduced levels of NAD+, yet whether changes in nucleotide metabolism control circadian behavioral and genomic rhythms remains unknown. Here, we reveal that supplementation with the NAD+ precursor nicotinamide riboside (NR) markedly reprograms metabolic and stress-response pathways that decline with aging through inhibition of the clock repressor PER2. NR enhances BMAL1 chromatin binding genome-wide through PER2K680 deacetylation, which in turn primes PER2 phosphorylation within a domain that controls nuclear transport and stability and that is mutated in human advanced sleep phase syndrome. In old mice, dampened BMAL1 chromatin binding, transcriptional oscillations, mitochondrial respiration rhythms, and late evening activity are restored by NAD+ repletion to youthful levels with NR. These results reveal effects of NAD+ on metabolism and the circadian system with aging through the spatiotemporal control of the molecular clock.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/genética , Proteínas Circadianas Period/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores Etários , Envelhecimento/genética , Animais , Proteínas CLOCK/genética , Ritmo Circadiano/fisiologia , Citocinas/metabolismo , Feminino , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NAD/metabolismo , Proteínas Circadianas Period/genética , Sirtuína 1/metabolismo , Sirtuínas/metabolismo
6.
JCI Insight ; 4(24)2019 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-31852847

RESUMO

In humans, chronic glucocorticoid use is associated with side effects like muscle wasting, obesity, and metabolic syndrome. Intermittent steroid dosing has been proposed in Duchenne Muscular Dystrophy patients to mitigate the side effects seen with daily steroid intake. We evaluated biomarkers from Duchenne Muscular Dystrophy patients, finding that, compared with chronic daily steroid use, weekend steroid use was associated with reduced serum insulin, free fatty acids, and branched chain amino acids, as well as reduction in fat mass despite having similar BMIs. We reasoned that intermittent prednisone administration in dystrophic mice would alter muscle epigenomic signatures, and we identified the coordinated action of the glucocorticoid receptor, KLF15 and MEF2C as mediators of a gene expression program driving metabolic reprogramming and enhanced nutrient utilization. Muscle lacking Klf15 failed to respond to intermittent steroids. Furthermore, coadministration of the histone acetyltransferase inhibitor anacardic acid with steroids in mdx mice eliminated steroid-specific epigenetic marks and abrogated the steroid response. Together, these findings indicate that intermittent, repeated exposure to glucocorticoids promotes performance in dystrophic muscle through an epigenetic program that enhances nutrient utilization.


Assuntos
Glucocorticoides/administração & dosagem , Músculo Esquelético/efeitos dos fármacos , Distrofia Muscular de Duchenne/tratamento farmacológico , Prednisona/administração & dosagem , Ácidos Anacárdicos/administração & dosagem , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Criança , Estudos Transversais , Modelos Animais de Doenças , Quimioterapia Combinada , Epigênese Genética/efeitos dos fármacos , Epigenômica , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases/antagonistas & inibidores , Histona Acetiltransferases/metabolismo , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Fatores de Transcrição MEF2/metabolismo , Masculino , Metabolômica , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/sangue , Distrofia Muscular de Duchenne/diagnóstico , Distrofia Muscular de Duchenne/genética , Nutrientes/sangue , Nutrientes/metabolismo , Pulsoterapia
7.
Cell Metab ; 29(5): 1078-1091.e5, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827863

RESUMO

The alignment of fasting and feeding with the sleep/wake cycle is coordinated by hypothalamic neurons, though the underlying molecular programs remain incompletely understood. Here, we demonstrate that the clock transcription pathway maximizes eating during wakefulness and glucose production during sleep through autonomous circadian regulation of NPY/AgRP neurons. Tandem profiling of whole-cell and ribosome-bound mRNAs in morning and evening under dynamic fasting and fed conditions identified temporal control of activity-dependent gene repertoires in AgRP neurons central to synaptogenesis, bioenergetics, and neurotransmitter and peptidergic signaling. Synaptic and circadian pathways were specific to whole-cell RNA analyses, while bioenergetic pathways were selectively enriched in the ribosome-bound transcriptome. Finally, we demonstrate that the AgRP clock mediates the transcriptional response to leptin. Our results reveal that time-of-day restriction in transcriptional control of energy-sensing neurons underlies the alignment of hunger and food acquisition with the sleep/wake state.


Assuntos
Proteína Relacionada com Agouti/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Fome/fisiologia , Neurônios/metabolismo , Transcrição Gênica/genética , Proteína Relacionada com Agouti/genética , Animais , Ingestão de Alimentos/fisiologia , Jejum/fisiologia , Redes Reguladoras de Genes , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Transdução de Sinais/genética , Sono/fisiologia , Transcriptoma , Vigília/fisiologia
8.
Nat Commun ; 9(1): 3659, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30201971

RESUMO

The HMG-CoA reductase degradation protein 1 (HRD1) has been identified as a key enzyme for endoplasmic reticulum-associated degradation of misfolded proteins, but its organ-specific physiological functions remain largely undefined. Here we show that mice with HRD1 deletion specifically in the liver display increased energy expenditure and are resistant to HFD-induced obesity and liver steatosis and insulin resistance. Proteomic analysis identifies a HRD1 interactome, a large portion of which includes metabolic regulators. Loss of HRD1 results in elevated ENTPD5, CPT2, RMND1, and HSD17B4 protein levels and a consequent hyperactivation of both AMPK and AKT pathways. Genome-wide mRNA sequencing revealed that HRD1-deficiency reprograms liver metabolic gene expression profiles, including suppressing genes involved in glycogenesis and lipogenesis and upregulating genes involved in glycolysis and fatty acid oxidation. We propose HRD1 as a liver metabolic regulator and a potential drug target for obesity, fatty liver disease, and insulin resistance associated with the metabolic syndrome.


Assuntos
Degradação Associada com o Retículo Endoplasmático , Retículo Endoplasmático/metabolismo , Fígado/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Adenilato Quinase/metabolismo , Animais , Peso Corporal , Dieta Hiperlipídica , Ativação Enzimática , Ácidos Graxos/metabolismo , Deleção de Genes , Regulação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glicólise , Células HEK293 , Células Hep G2 , Humanos , Lipogênese , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Proteoma , Proteômica , Triglicerídeos/metabolismo , Ubiquitinação
9.
Cell Metab ; 25(1): 86-92, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-27773696

RESUMO

Circadian clocks are encoded by a transcription-translation feedback loop that aligns energetic processes with the solar cycle. We show that genetic disruption of the clock activator BMAL1 in skeletal myotubes and fibroblasts increased levels of the hypoxia-inducible factor 1α (HIF1α) under hypoxic conditions. Bmal1-/- myotubes displayed reduced anaerobic glycolysis, mitochondrial respiration with glycolytic fuel, and transcription of HIF1α targets Phd3, Vegfa, Mct4, Pk-m, and Ldha, whereas abrogation of the clock repressors CRY1/2 stabilized HIF1α in response to hypoxia. HIF1α bound directly to core clock gene promoters, and, when co-expressed with BMAL1, led to transactivation of PER2-LUC and HRE-LUC reporters. Further, genetic stabilization of HIF1α in Vhl-/- cells altered circadian transcription. Finally, induction of clock and HIF1α target genes in response to strenuous exercise varied according to the time of day in wild-type mice. Collectively, our results reveal bidirectional interactions between circadian and HIF pathways that influence metabolic adaptation to hypoxia.


Assuntos
Relógios Circadianos , Glicólise , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Anaerobiose , Animais , Relógios Circadianos/genética , Ritmo Circadiano/genética , Hipóxia/genética , Hipóxia/metabolismo , Camundongos , Especificidade de Órgãos , Consumo de Oxigênio , Condicionamento Físico Animal , Transcrição Gênica
10.
Science ; 350(6261): aac4250, 2015 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-26542580

RESUMO

The mammalian transcription factors CLOCK and BMAL1 are essential components of the molecular clock that coordinate behavior and metabolism with the solar cycle. Genetic or environmental perturbation of circadian cycles contributes to metabolic disorders including type 2 diabetes. To study the impact of the cell-autonomous clock on pancreatic ß cell function, we examined pancreatic islets from mice with either intact or disrupted BMAL1 expression both throughout life and limited to adulthood. We found pronounced oscillation of insulin secretion that was synchronized with the expression of genes encoding secretory machinery and signaling factors that regulate insulin release. CLOCK/BMAL1 colocalized with the pancreatic transcription factor PDX1 within active enhancers distinct from those controlling rhythmic metabolic gene networks in liver. We also found that ß cell clock ablation in adult mice caused severe glucose intolerance. Thus, cell type-specific enhancers underlie the circadian control of peripheral metabolism throughout life and may help to explain its dysregulation in diabetes.


Assuntos
Ritmo Circadiano/genética , Elementos Facilitadores Genéticos/fisiologia , Regulação da Expressão Gênica , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Animais , Proteínas CLOCK/metabolismo , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Exocitose/genética , Intolerância à Glucose , Proteínas de Homeodomínio/metabolismo , Humanos , Secreção de Insulina , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transativadores/metabolismo , Transcrição Gênica
11.
Science ; 342(6158): 1243417, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24051248

RESUMO

Circadian clocks are self-sustained cellular oscillators that synchronize oxidative and reductive cycles in anticipation of the solar cycle. We found that the clock transcription feedback loop produces cycles of nicotinamide adenine dinucleotide (NAD(+)) biosynthesis, adenosine triphosphate production, and mitochondrial respiration through modulation of mitochondrial protein acetylation to synchronize oxidative metabolic pathways with the 24-hour fasting and feeding cycle. Circadian control of the activity of the NAD(+)-dependent deacetylase sirtuin 3 (SIRT3) generated rhythms in the acetylation and activity of oxidative enzymes and respiration in isolated mitochondria, and NAD(+) supplementation restored protein deacetylation and enhanced oxygen consumption in circadian mutant mice. Thus, circadian control of NAD(+) bioavailability modulates mitochondrial oxidative function and organismal metabolism across the daily cycles of fasting and feeding.


Assuntos
Relógios Circadianos/fisiologia , Metabolismo Energético , Mitocôndrias Hepáticas/metabolismo , NAD/metabolismo , Fatores de Transcrição ARNTL/genética , Fatores de Transcrição ARNTL/metabolismo , Acetilação , Animais , Relógios Circadianos/genética , Jejum , Metabolismo dos Lipídeos , Fígado/metabolismo , Camundongos , Camundongos Knockout , Oxirredução , Consumo de Oxigênio , Sirtuína 3/genética , Sirtuína 3/metabolismo
12.
J Am Heart Assoc ; 2(2): e000159, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23598272

RESUMO

BACKGROUND: Ischemia-reperfusion (I/R) studies have implicated oxidant stress, the mitochondrial permeability transition pore (mPTP), and poly(ADP-ribose) polymerase (PARP) as contributing factors in myocardial cell death. However, the interdependence of these factors in the intact, blood-perfused heart is not known. We therefore wanted to determine whether oxidant stress, mPTP opening, and PARP activity contribute to the same death pathway after myocardial I/R. METHODS AND RESULTS: A murine left anterior descending coronary artery (LAD) occlusion (30 minutes) and release (1 to 4 hours) model was employed. Experimental groups included controls and antioxidant-treated, mPTP-inhibited, or PARP-inhibited hearts. Antioxidant treatment prevented oxidative damage, mPTP opening, ATP depletion, and PARP activity, placing oxidant stress as the proximal death trigger. Genetic deletion of cyclophilin D (CypD(-/-)) prevented loss of total NAD(+) and PARP activity, and mPTP-mediated loss of mitochondrial function. Control hearts showed progressive mitochondrial depolarization and loss of ATP from 1.5 to 4 hours of reperfusion, but not outer mitochondrial membrane rupture. Neither genetic deletion of PARP-1 nor its pharmacological inhibition prevented the initial mPTP-mediated depolarization or loss of ATP, but PARP ablation did allow mitochondrial recovery by 4 hours of reperfusion. CONCLUSIONS: These results indicate that oxidant stress, the mPTP, and PARP activity contribute to a single death pathway after I/R in the heart. PARP activation undermines cell survival by preventing mitochondrial recovery after mPTP opening early in reperfusion. This suggests that PARP-mediated prolongation of mitochondrial depolarization contributes significantly to cell death via an energetic crisis rather than by mitochondrial outer membrane rupture.


Assuntos
Mitocôndrias Cardíacas/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/fisiologia , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Estresse Oxidativo/fisiologia , Poli(ADP-Ribose) Polimerases/fisiologia , Animais , Morte Celular , Sobrevivência Celular , Ciclofilinas/genética , Modelos Animais de Doenças , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Knockout , Membranas Mitocondriais/metabolismo , Poro de Transição de Permeabilidade Mitocondrial , Isquemia Miocárdica/enzimologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Poli(ADP-Ribose) Polimerase-1 , Poli(ADP-Ribose) Polimerases/genética , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...