Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Sci Rep ; 14(1): 7866, 2024 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570723

RESUMO

In 2019, a joint eight-variant model was published in which eight single nucleotide polymorphisms (SNPs) in seven Apis mellifera genes were associated with Varroa destructor drone brood resistance (DBR, i.e. mite non-reproduction in drone brood). As this model was derived from only one Darwinian Black Bee Box colony, it could not directly be applied on a population-overarching scale in the northern part of Belgium (Flanders), where beekeepers prefer the carnica subspecies. To determine whether these eight SNPs remained associated with the DBR trait on a Flemish colony-broad scope, we performed population-wide modelling through sampling of various A. mellifera carnica colonies, DBR scoring of Varroa-infested drone brood and variant genotyping. Novel eight-variant modelling was performed and the classification performance of the eight SNPs was evaluated. Besides, we built a reduced three-variant model retaining only three genetic variants and found that this model classified 76% of the phenotyped drones correctly. To examine the spread of beneficial alleles and predict the DBR probability distribution in Flanders, we determined the allelic frequencies of the three variants in 292 A. mellifera carnica queens. As such, this research reveals prospects of marker-assisted selection for Varroa drone brood resistance in honeybees.


Assuntos
Varroidae , Abelhas/genética , Animais , Varroidae/genética , Polimorfismo de Nucleotídeo Único , Frequência do Gene , Bélgica , Fenótipo
2.
Sci Rep ; 14(1): 9612, 2024 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-38671077

RESUMO

The Carniolan honey bee (Apis mellifera carnica) plays an essential role in crop pollination, environment diversity, and the production of honey bee products. However, the health of individual honey bees and their colonies is under pressure due to multiple stressors, including viruses as a significant threat to bees. Monitoring various virus infections could be a crucial selection tool during queen rearing. In the present study, samples from all developmental stages (eggs, larvae, pupae, and queens) were screened for the incidence of seven viruses during queen rearing in Slovenia. The screening of a total of 108 samples from five queen breeders was performed by the RT-qPCR assays. The results showed that the highest incidence was observed for black queen cell virus (BQCV), Lake Sinai virus 3 (LSV3), deformed wing virus B (DWV-B), and sacbrood virus (SBV). The highest viral load was detected in queens (6.07 log10 copies/queen) and larvae (5.50 log10 copies/larva) for BQCV, followed by SBV in larvae (5.47 log10 copies/larva). When comparing all the honey bee developmental stages, the eggs exhibited general screening for virus incidence and load in queen mother colonies. The results suggest that analyzing eggs is a good indicator of resilience to virus infection during queen development.


Assuntos
Larva , Animais , Abelhas/virologia , Larva/virologia , Vírus de RNA/genética , Vírus de RNA/isolamento & purificação , Vírus de Insetos/genética , Vírus de Insetos/isolamento & purificação , Dicistroviridae/genética , Dicistroviridae/patogenicidade , Dicistroviridae/isolamento & purificação , Carga Viral , Óvulo/virologia , Feminino , Pupa/virologia , Eslovênia/epidemiologia
3.
J Anim Sci Biotechnol ; 15(1): 23, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38424649

RESUMO

Transfer RNA-derived small RNAs (tsRNAs) have been shown to be involved in early embryo development and repression of endogenous retroelements in embryos and stem cells. However, it is unknown whether tsRNAs also regulate embryo hatching. In this study, we mined the sequencing data of a previous experiment in which we demonstrated that the microRNA (miRNA) cargo of preimplantation embryonic extracellular vesicles (EVs) influences embryo development. We thus profiled the tsRNA cargo of EVs secreted by blastocysts and non-blastocysts. The majority of tsRNAs was identified as tRNA halves originating from the 5´ ends of tRNAs. Among the 148 differentially expressed tsRNAs, the 19 nt tRNA fragment (tRF) tDR-14:32-Glu-CTC-1 was found to be significantly up-regulated in EVs derived from non-blastocysts. RT-qPCR assays confirmed its significant up-regulation in non-blastocyst embryos and their conditioned medium compared to the blastocyst group (P < 0.05). Inhibition of tDR-14:32-Glu-CTC-1 by supplementing antagomirs to the conditioned medium improved embryo hatching (P < 0.05). Transcriptomic analysis of embryos treated with tDR-14:32-Glu-CTC-1 antagomirs further showed differential expression of genes that are associated with embryo hatching and implantation. In summary, tDR-14:32-Glu-CTC-1 is up-regulated in non-blastocyst embryos and their secretions, and inhibition of tDR-14:32-Glu-CTC-1 promotes embryo hatching, while influencing embryo implantation-related genes and pathways. These results indicate that embryonic EVs containing specific tRFs may regulate preimplantation embryo development.

4.
Front Vet Sci ; 11: 1327081, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38371598

RESUMO

Introduction: The correct labeling of a genetic variant as pathogenic is important as breeding decisions based on incorrect DNA tests can lead to the unwarranted exclusion of animals, potentially compromising the long-term health of a population. In human medicine, the American college of Medical Genetics (ACMG) guidelines provide a framework for variant classification. This study aims to apply these guidelines to six genetic variants associated with hypertrophic cardiomyopathy (HCM) in certain cat breeds and to propose a modified criterion for variant classification. Methods: Genetic samples were sourced from five cat breeds: Maine Coon, Sphynx, Ragdoll, Devon Rex, and British Short- and Longhair. Allele frequencies were determined, and in the subset with phenotypes available, odds ratios to determine the association with HCM were calculated. In silico evaluation followed with joint evidence and data from other publications assisting in the classification of each variant. Results: Two variants, MYBPC3:c.91G > C [A31P] and MYBPC3:c.2453C > T [R818W], were designated as pathogenic. One variant, MYH7:c.5647G > A [E1883K], was found likely pathogenic, while the remaining three were labeled as variants of unknown significance. Discussion: Routine genetic testing is advised solely for the MYBPC3:c.91G > C [A31P] in the Maine Coon and MYBPC3:c.2453C > T [R818W] in the Ragdoll breed. The human ACMG guidelines serve as a suitable foundational tool to ascertain which variants to include; however, refining them for application in veterinary medicine might be beneficial.

5.
Reproduction ; 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063339

RESUMO

MicroRNAs (miRNAs), which can be carried inside extracellular vesicles (EVs), play a crucial role in regulating embryo development up to the blastocyst stage. Yet, the molecular mechanisms underlying blastocyst development and quality are largely unknown. Recently, our group identified 69 differentially expressed miRNAs in extracellular vesicles (EVs) isolated from culture medium conditioned by bovine embryos that either developed to the blastocyst stage or did not (non-blastocysts). We found miR-146b to be more abundant in the EVs derived from media conditioned by non-blastocyst embryos. Using RT-qPCR, we here confirmed the upregulation of miR-146b in non-blastocyst (arrested at 2-4 cell and morula stage) embryos compared to blastocysts (p<0.005), which coincides with the upregulation of miR-146b in EVs derived from the medium of these non-blastocysts. To evaluate a functional effect, bovine embryo culture media were supplemented with miR-146b mimics, resulting in significantly decreased embryo quality, with lower blastocyst rates at day 7 and lower total cell numbers, while the opposite was found after supplementation with miR-146b inhibitors, which resulted in reduced apoptosis rates (P < 0.01). Transcriptomic analysis of embryos treated with miR-146b mimics or inhibitors showed differential expression (P < 0.01) of genes associated with apoptosis, cell differentiation, and the RNA Pol II transcription complex, including WDR36, MBNL2, ERCC6l2, PYGO1, and SNIP1. Overall, miR-146b is overexpressed in non-blastocyst embryos and in EVs secreted by these embryos, and it regulates genes involved in embryo development and apoptosis, resulting in decreased embryo quality.

6.
Cancers (Basel) ; 15(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894282

RESUMO

Biomarkers are biomolecules used to identify or predict the presence of a specific disease or condition. They play an important role in early diagnosis and may be crucial for treatment. MicroRNAs (miRNAs), a group of small non-coding RNAs, are more and more regarded as promising biomarkers for several reasons. Dysregulation of miRNAs has been linked with development of several diseases, including many different types of cancer, and abnormal levels can be present in early stages of tumor development. Because miRNAs are stable molecules secreted and freely circulating in blood and urine, they can be sampled with little or no invasion. Here, we present an overview of the current literature, focusing on the types of cancers for which dysregulation of miR-665 has been associated with disease progression, recurrence, and/or prognosis. It needs to be emphasized that the role of miR-665 sometimes seems ambiguous, in the sense that it can be upregulated in one cancer type and downregulated in another and can even change during the progression of the same cancer. Caution is thus needed before using miR-665 as a biomarker, and extrapolation between different cancer types is not advisable. Moreover, more detailed understanding of the different roles of miR-665 will help in determining its potential as a diagnostic and prognostic biomarker.

7.
J Vet Intern Med ; 37(6): 2310-2314, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37905444

RESUMO

BACKGROUND: KCNJ10 and CAPN1 variants cause "spinocerebellar" ataxia in dogs, but their association with generalized myokymia and neuromyotonia remains unclear. OBJECTIVE: To investigate the association between KCNJ10 and CAPN1 and myokymia or neuromyotonia, with or without concurrent spinocerebellar ataxia. ANIMALS: Thirty-three client-owned dogs with spinocerebellar ataxia, myokymia neuromytonia, or a combination of these signs. METHODS: Genetic analysis of a cohort of dogs clinically diagnosed with spinocerebellar ataxia, myokymia or neuromyotonia. KCNJ10 c.627C>G and CAPN1 c.344G>A variants and the coding sequence of KCNA1, KCNA2, KCNA6, KCNJ10 and HINT1 were sequenced using DNA extracted from blood samples. RESULTS: Twenty-four Jack Russell terriers, 1 Jack Russell terrier cross, 1 Dachshund and 1 mixed breed with spinocerebellar ataxia were biallelic (homozygous) for the KCNJ10 c.627C>G variant. Twenty-one of those dogs had myokymia, neuromyotonia, or both. One Parson Russell terrier with spinocerebellar ataxia alone was biallelic for the CAPN1 c.344G>A variant. Neither variant was found in 1 Jack Russell terrier with ataxia alone, nor in 3 Jack Russell terriers and 1 Yorkshire terrier with myokymia and neuromyotonia alone. No other causal variants were found in the coding sequence of the investigated candidate genes in these latter 5 dogs. CONCLUSION: The KCNJ10 c.627C>G variant, or rarely the CAPN1 c.344G>A variant, was confirmed to be the causal variant of spinocerebellar ataxia. We also report the presence of the KCNJ10 c.627C>G variant in the Dachshund breed. In dogs with myokymia and neuromyotonia alone the reported gene variants were not found. Other genetic or immune-mediated causes should be investigated to explain the clinical signs of these cases.


Assuntos
Doenças do Cão , Síndrome de Isaacs , Mioquimia , Ataxias Espinocerebelares , Humanos , Cães , Animais , Mioquimia/genética , Mioquimia/veterinária , Síndrome de Isaacs/genética , Síndrome de Isaacs/veterinária , Ataxias Espinocerebelares/veterinária , Ataxia/veterinária , Cruzamento , Proteínas do Tecido Nervoso , Canal de Potássio Kv1.6 , Doenças do Cão/genética
8.
BMC Bioinformatics ; 24(1): 305, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528412

RESUMO

BACKGROUND: Since the introduction of next-generation sequencing (NGS) techniques, whole-exome sequencing (WES) and whole-genome sequencing (WGS) have not only revolutionized research, but also diagnostics. The gradual switch from single gene testing to WES and WGS required a different set of skills, given the amount and type of data generated, while the demand for standardization remained. However, most of the tools currently available are solely applicable for human analysis because they require access to specific databases and/or simply do not support other species. Additionally, a complicating factor in clinical genetics in animals is that genetic diversity is often dangerously low due to the breeding history. Combined, there is a clear need for an easy-to-use, flexible tool that allows standardized data processing and preferably, monitoring of genetic diversity as well. To fill these gaps, we developed the R-package variantscanR that allows an easy and straightforward identification and prioritization of known phenotype-associated variants identified in dogs and other domestic animals. RESULTS: The R-package variantscanR enables the filtering of variant call format (VCF) files for the presence of known phenotype-associated variants and allows for the estimation of genetic diversity using multi-sample VCF files. Next to this, additional functions are available for the quality control and processing of user-defined input files to make the workflow as easy and straightforward as possible. This user-friendly approach enables the standardisation of complex data analysis in clinical settings. CONCLUSION: We developed an R-package for the identification of known phenotype-associated variants and calculation of genetic diversity.


Assuntos
Animais Domésticos , Software , Humanos , Animais , Cães , Animais Domésticos/genética , Sequenciamento Completo do Genoma/métodos , Fenótipo , Bases de Dados Genéticas , Sequenciamento de Nucleotídeos em Larga Escala
9.
J Vet Intern Med ; 37(4): 1306-1322, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37341581

RESUMO

Hereditary ataxias are a large group of neurodegenerative diseases that have cerebellar or spinocerebellar dysfunction as core feature, occurring as an isolated sign or as part of a syndrome. Based on neuropathology, this group of diseases has so far been classified into cerebellar cortical degenerations, spinocerebellar degenerations, cerebellar ataxias without substantial neurodegeneration, canine multiple system degeneration, and episodic ataxia. Several new hereditary ataxia syndromes are described, but most of these diseases have similar clinical signs and unspecific diagnostic findings, wherefore achieving a definitive diagnosis in these dogs is challenging. Eighteen new genetic variants associated with these diseases have been discovered in the last decade, allowing clinicians to reach a definitive diagnosis for most of these conditions, and allowing breeding schemes to adapt to prevent breeding of affected puppies. This review summarizes the current knowledge about hereditary ataxias in dogs, and proposes to add a "multifocal degenerations with predominant (spino)cerebellar component" category regrouping canine multiple system degeneration, new hereditary ataxia syndromes that do not fit in 1 of the previous categories, as well as specific neuroaxonal dystrophies and lysosomal storage diseases that cause major (spino)cerebellar dysfunction.


Assuntos
Ataxia Cerebelar , Doenças do Cão , Degenerações Espinocerebelares , Cães , Animais , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/veterinária , Ataxia Cerebelar/genética , Ataxia Cerebelar/veterinária , Ataxia Cerebelar/diagnóstico , Doenças do Cão/genética
10.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047535

RESUMO

While human in vitro embryo production is generally performed individually, animal models have shown that culturing embryos in groups improves blastocyst yield and quality. Paracrine embryotrophins could be responsible for this improved embryo development, but their identity remains largely unknown. We hypothesize that supplementation of embryotrophic proteins to a culture medium could be the key to improve individual embryo production. In this study, proteomics screening of culture media conditioned by bovine embryos revealed cathepsin-L as being secreted by both excellent- and good-quality embryos, while being absent in the medium conditioned by poor-quality embryos. The embryotrophic role of cathepsin-L was explored in vitro, whereby bovine zygotes were cultured individually for 8 days with or without cathepsin-L. Preliminary dose-response experiments pointed out 100 ng/mL as the optimal concentration of cathepsin-L in embryo culture medium. Supplementation of cathepsin-L to individual culture systems significantly improved blastocyst development and quality in terms of blastocoel formation at day 7, and the hatching ratio and apoptotic cell ratio at day 8, compared to the control. Taken together, cathepsin-L acts as an important embryotrophin by increasing embryo quality, and regulating blastulation and hatching in bovine in vitro embryo production.


Assuntos
Técnicas de Cultura Embrionária , Desenvolvimento Embrionário , Bovinos , Animais , Humanos , Zigoto , Blastocisto/metabolismo , Catepsinas/metabolismo , Meios de Cultura/farmacologia , Meios de Cultura/metabolismo , Fertilização in vitro
11.
Porcine Health Manag ; 9(1): 10, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-37016456

RESUMO

BACKGROUND: Weaning is a critical phase in the pigs' life and gut health might be compromised. Gluconic acid was shown to be poorly absorbed but readily fermented to butyrate in the gut which in turn can improve gut function. Hence, a total of 144 weaning pigs were fed the experimental diets for 42 days. Three treatments were replicated in 8 pens with 6 piglets each: control; low dietary dose of gluconic acid, 9 g/kg; and high dietary dose of gluconic acid, 18 g/kg. After 21 days, one piglet from each pen was sampled for blood haematology and biochemistry, fore- and hindgut digesta characteristics and microbiota, and distal small intestinal histo-morphological indices and gene expression. RESULTS: Feeding gluconic acid enhanced performance in period d 0-14 post-weaning, in particular feed intake was increased (P = 0.028), though the high dose did not show benefits over the low dose. Regarding d 0-42, feed intake was elevated (P = 0.026). At d 21, piglets fed 18 g/kg gluconic acid showed a trend for lower number of total white blood cells (P = 0.060), caused by particularly lower numbers of lymphocytes as compared to control (P = 0.028). Highly reduced plasma urea was found for groups fed gluconic acid, it amounted to 2.6 and 2.6 mmol/L for the 9 and 18 g/kg level, respectively, as compared to 3.8 mmol/L in control (P = 0.003). Feeding gluconic acid promoted the relative abundance of lactic-acid-producing and acid-utilizing bacteria. In distal small intestine, Lactobacillus amylovorus increased substantially from 11.3 to 82.6% for control and gluconic acid 18 g/kg, respectively (P < 0.05). In mid-colon, the butyrate producers Faecalibacterium prausnitzii (P > 0.05) and Megasphaera elsdenii (P < 0.05) showed highest abundance in gluconic acid 18 g/kg. Consequently, in caecum and mid-colon, increased relative molar percentage of butyrate were found, e.g., 10.0, 12.9 et 14.7% in caecum for gluconic acid at 0, 9, and 18 g/kg, respectively (P = 0.046). Elevated mRNA anti-inflammatory cytokine and survival signalling levels in distal small intestinal mucosa were found by feeding gluconic acid which might be mediated by butyrate. CONCLUSIONS: Gluconic acid may have potential to alleviate the postweaning growth-check in pigs by altering microbiota composition and fermentation in the gut.

12.
Anim Genet ; 54(4): 483-490, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36869603

RESUMO

Paradoxical pseudomyotonia has previously been described in the English Cocker Spaniel (ECS) and English Springer Spaniel (ESS) breeds, without the identification of potentially causative variants. This disease is characterised by episodes of exercise-induced generalised myotonic-like muscle stiffness, phenotypically similar to congenital pseudomyotonia in cattle, and paramyotonia congenita and Brody disease in people. Four additional affected ESS dogs with paradoxical pseudomyotonia are described in this report, together with the identification of the autosomal recessive c.126C>A(p.(Cys42Ter)) SLC7A10 nonsense variant as candidate disease-causing variant in both ECS and ESS. The variant has an estimated prevalence of 2.5% in both breeds in the British study samples, but was not identified in the Belgian study samples. Genetic testing-based breeding should be a useful tool to eliminate this disease in the future, although an effective treatment option is available for severely affected dogs.


Assuntos
Doenças dos Bovinos , Doenças do Cão , Síndrome de Isaacs , Cães , Animais , Bovinos , Síndrome de Isaacs/genética , Testes Genéticos , Doenças do Cão/genética , Doenças do Cão/epidemiologia , Doenças dos Bovinos/genética
13.
Animals (Basel) ; 13(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36899667

RESUMO

(1) Idiopathic epilepsy (IE) is thought to have a genetic cause in several dog breeds. However, only two causal variants have been identified to date, and few risk loci are known. No genetic studies have been conducted on IE in the Dutch partridge dog (DPD), and little has been reported on the epileptic phenotype in this breed. (2) Owner-filled questionnaires and diagnostic investigations were used to characterize IE in the DPD. A genome-wide association study (GWAS) involving 16 cases and 43 controls was performed, followed by sequencing of the coding sequence and splice site regions of a candidate gene within the associated region. Subsequent whole-exome sequencing (WES) of one family (including one IE-affected dog, both parents, and an IE-free sibling) was performed. (3) IE in the DPD has a broad range in terms of age at onset, frequency, and duration of epileptic seizures. Most dogs showed focal epileptic seizures evolving into generalized seizures. A new risk locus on chromosome 12 (BICF2G630119560; praw = 4.4 × 10-7; padj = 0.043) was identified through GWAS. Sequencing of the GRIK2 candidate gene revealed no variants of interest. No WES variants were located within the associated GWAS region. However, a variant in CCDC85A (chromosome 10; XM_038680630.1: c.689C > T) was discovered, and dogs homozygous for the variant (T/T) had an increased risk of developing IE (OR: 6.0; 95% CI: 1.6-22.6). This variant was identified as likely pathogenic according to ACMG guidelines. (4) Further research is necessary before the risk locus or CCDC85A variant can be used for breeding decisions.

14.
J Vet Intern Med ; 37(1): 216-222, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36426918

RESUMO

BACKGROUND: In Belgian Malinois, a KCNJ10 variant causes progressive spinocerebellar degeneration. HYPOTHESIS/OBJECTIVES: Describe the clinical, diagnostic, pathological and genetic features of spinocerebellar degeneration in the Bouvier des Ardennes breed. ANIMALS: Five affected Bouvier des Ardennes puppies with spinocerebellar ataxia (SCA), 8 healthy related dogs, and 63 healthy unrelated Bouvier des Ardennes. METHODS: Sequential case study. RESULTS: Clinical signs started at 6 weeks of age in 1 puppy with severe signs of cerebellar disease, and at 7 to 10 weeks of age in the 4 remaining puppies with milder signs of spinocerebellar disease. The first puppy displayed severe intention tremors and rapidly progressive generalized hypermetric ataxia, whereas the 4 others developed a milder progressive SCA. Euthanasia after progression to nonambulatory status was performed by 8 weeks of age in the first puppy, and before 11 months of age in the 4 remaining puppies. Histopathology revealed cerebellar spongy degeneration and a focal symmetrical demyelinating myelopathy. All cases were homozygous for KCNJ10 XM_545752.6:c.986T>C(p.(Leu329Pro)), which is pathogenic for SCA with (or without) myokymia, seizures or both (SAMS) and spongy degeneration and cerebellar ataxia (SDCA) 1 in Belgian Malinois dogs. All sampled parents were heterozygous and none of the healthy dogs were homozygous for this recessive variant. This variant has an allele frequency of 15% in the 63 healthy dogs studied. CONCLUSIONS AND CLINICAL IMPORTANCE: Inherited spinocerebellar degeneration also affects the Bouvier des Ardennes breed and is caused by a KCNJ10 variant. It can present with a spectrum of severity grades, ranging from severe cerebellar to milder spinocerebellar signs.


Assuntos
Ataxia Cerebelar , Doenças do Cão , Ataxias Espinocerebelares , Degenerações Espinocerebelares , Cães , Animais , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/veterinária , Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Ataxia Cerebelar/veterinária , Degenerações Espinocerebelares/genética , Degenerações Espinocerebelares/veterinária , Mutação de Sentido Incorreto , Homozigoto , Doenças do Cão/genética
15.
J Vet Med Educ ; 49(6): 799-806, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36472562

RESUMO

Veterinarian competency in genetics is vital for a meaningful application of the rapidly growing number of genetic tests available for animals. We evaluated the use of genetic tests in the daily veterinary practice and the competency of university-employed veterinarians in applying basic principles of genetics in a clinical setting through an electronic survey with 14 cases and 7 statements on genetics. Ninety-one non-geneticist veterinarians from two veterinary faculties in two different countries responded. Almost half of the participants apply genetic tests during their daily work, with frequencies varying between weekly and once a year. The most common indication to request a genetic test was diagnostic testing of clinically ill patients. Although 80% of the veterinarians communicated the result of a genetic test themselves, only 56% of them found it "very to rather easy" to find the correct test, and only 32% of them always felt competent to interpret the result of the test. The number of correctly answered questions varied widely, with median scores of 9/14 (range: 0-14) and 5/7 (range: 0-7) for the cases and statements, respectively. Most difficulties were seen with recognition of pedigree inheritance patterns, while veterinarians scored better in breeding advice and probability of disease estimations. Veterinarians scored best on questions related to autosomal recessive inheritance, followed by complex, autosomal dominant, X-linked recessive, and X-linked dominant inheritance. This study exposed pain points in veterinarians' knowledge and has led to the formulation of recommendations for future education and communication between laboratories, geneticists, and veterinarians.


Assuntos
Educação em Veterinária , Animais , Universidades
16.
Animals (Basel) ; 12(21)2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36359052

RESUMO

(1) Feline dystrophin-deficient muscular dystrophy (ddMD) is a fatal disease characterized by progressive weakness and degeneration of skeletal muscles and is caused by variants in the DMD gene. To date, only two feline causal variants have been identified. This study reports two cases of male Maine coon siblings that presented with muscular hypertrophy, growth retardation, weight loss, and vomiting. (2) Both cats were clinically examined and histopathology and immunofluorescent staining of the affected muscle was performed. DMD mRNA was sequenced to identify putative causal variants. (3) Both cats showed a significant increase in serum creatine kinase activity. Electromyography and histopathological examination of the muscle samples revealed abnormalities consistent with a dystrophic phenotype. Immunohistochemical testing revealed the absence of dystrophin, confirming the diagnosis of dystrophin-deficient muscular dystrophy. mRNA sequencing revealed a nonsense variant in exon 11 of the feline DMD gene, NC_058386.1 (XM_045050794.1): c.1180C > T (p.(Arg394*)), which results in the loss of the majority of the dystrophin protein. Perfect X-linked segregation of the variant was established in the pedigree. (4) ddMD was described for the first time in the Maine coon and the c.1180C>T variant was confirmed as the causal variant.

17.
J Vet Intern Med ; 36(5): 1597-1606, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36054182

RESUMO

BACKGROUND: Primary congenital hypothyroidism (CH) is a rare endocrine disorder in cats with a largely unknown genetic cause. OBJECTIVES: Describe the clinical presentation of CH in 11 affected cats and identify the causal genetic variant. ANIMALS: Eleven CH-cats from 10 unrelated families, 11 CH-free family members, 21 unrelated CH-free cats, and 155 unrelated nondiagnosed cats from different breeds. METHODS: Case control study of CH-cats and their siblings (2019-2021). Diagnosis was based on low to low-normal serum thyroxine (T4) concentrations, high thyroid-stimulating hormone (TSH) concentrations and clinical signs compatible with CH. We identified the causal variant using Sanger sequencing, genotyping via PCR-RFLP and variant interpretation using ACMG/AMP guidelines. RESULTS: All CH-cats (5 weeks-8 years) had disproportionate dwarfism. A goiter was not palpable in all. Thyroid scintigraphy with radiopertechnetate showed abnormally high uptake by thyroid glands, whereas scintigraphy with radioiodine showed abnormally low uptake, compatible with a defect in iodine organification by thyroid peroxidase (TPO). All cases were homozygous for TPO variant XM_006930524.4:c.430G>A(p.(Gly144Arg)), while none of the CH-free cats were. All sampled parents were heterozygous for this recessive variant. This variant was found in 15 cat breeds with an estimated allele frequency of 9%. CONCLUSIONS AND CLINICAL IMPORTANCE: Disproportionate dwarfism, abnormally high TSH and abnormally low to low-normal T4 concentrations are diagnostic for CH in cats. All cases had dyshormonogenesis demonstrated by thyroid scintigraphy. This novel TPO missense variant (not described in humans) causes CH in cats and awareness of it can assist in diagnosis and breeding.


Assuntos
Doenças do Gato , Hipotireoidismo Congênito , Animais , Gatos , Estudos de Casos e Controles , Doenças do Gato/diagnóstico , Doenças do Gato/genética , Hipotireoidismo Congênito/diagnóstico , Hipotireoidismo Congênito/genética , Hipotireoidismo Congênito/veterinária , Iodeto Peroxidase/genética , Radioisótopos do Iodo , Tireotropina , Tiroxina
18.
Animals (Basel) ; 12(15)2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35953997

RESUMO

Corneal sequestra are ophthalmic lesions that are remarkably common in Persian, Himalayan and exotic cats. In this study, the genetic aspects of this disease were investigated in a population of cats originating from a single cattery. Odds ratios were calculated for parents with affected offspring. The heritability of (owner-reported) corneal sequestra was estimated with a Markov chain Monte Carlo procedure. Well-phenotyped cases and controls were used for a genome-wide association study. Data from 692 cats originating from the cattery, of which 61 were affected, were used. Cats from two specific mothers had significantly higher odds of developing corneal sequestra, but no significant effect of the fathers was found (after correction for the mothers). The heritability of corneal sequestra was estimated to be 0.96. A genome-wide association study with 14 cases and 10 controls did not reveal an associated chromosomal region. The large effect that genetic factors had on the development of corneal sequestra in this study suggests that selective breeding could be an effective way to reduce the prevalence of this condition in these cat breeds.

19.
PLoS One ; 17(8): e0273706, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36037240

RESUMO

Multidrug sensitivity is an autosomal recessive disorder in dogs caused by a 4-bp deletion in the ABCB1 gene, often referred to as the ABCB1-1Δ variant. This disease has a high prevalence in some breeds and causes adverse reactions to certain drugs when given in normal doses. Though most dogs known to be at risk are of the collie lineage or were traced back to it, the variant has also been described in several seemingly unrelated breeds. It is generally advised to genotype dogs at risk before treating them. However, there seems to be a discrepancy between the advice and current veterinary practices, as a recent study in Belgium and the Netherlands showed that most veterinarians never order a DNA test. To assess the possible risk of not testing for multidrug sensitivity in a clinical setting, the ABCB1-1Δ variant allele frequency was established in a sample of 286 dogs from a veterinary clinic. This frequency was compared to the allelic frequency in 599 samples specifically sent for genetic testing. While the allelic frequency in the sample for genetic testing was high (21.6%) and in line with the general reports, the allelic frequency in the clinical setting was low (0.2%), demonstrating an enormous difference between laboratory and clinical frequencies. Because of the low frequency of the disease-causing variant in the general clinical population, the risk of encountering a dog displaying multidrug sensitivity despite not genotyping seems to be low. As the variant was only found in an at-risk breed, the current recommendation of routinely genotyping at-risk breeds before treatment seems justified.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Doenças do Cão , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Alelos , Animais , Doenças do Cão/genética , Cães , Frequência do Gene , Genótipo , Prevalência
20.
Anim Genet ; 53(4): 526-529, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35634705

RESUMO

Hypertrophic cardiomyopathy (HCM) is a common and potentially fatal heart disease in many cat breeds. An intronic variant in TNNT2, c.95-108G>A, was recently reported as the cause of HCM in the Maine Coon. The aim of this study was to determine this variant's allele frequency in different populations and its possible association with HCM. Based on 160 Maine Coon samples collected in Belgium, Italy, Sweden and the USA, the variant's allele frequency was estimated to be 0.32. Analysis of the 99 Lives feline whole genome sequencing database showed that the TNNT2 variant also occurs in other breeds, as well as mixed-breed cats. Comparison of 31 affected and 58 healthy cats did not reveal significantly increased odds for HCM in homozygotes. Based on the combined evidence and in agreement with the standards and guidelines for the interpretation of sequence variants, this variant is currently classified as a variant of unknown significance and should not be used for breeding decisions regarding HCM.


Assuntos
Cardiomiopatia Hipertrófica , Doenças do Gato , Animais , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/veterinária , Proteínas de Transporte/genética , Gatos , Homozigoto , Mutação , Sequenciamento Completo do Genoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...