Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121837, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36137499

RESUMO

Quantifying the mid-range infrared hydroxyl stretch absorbance region has traditionally been a challenge due to the wavenumber dependence of the attenuation coefficient. Interpretation often assigns a single attenuation coefficient to each type of hydrogen-bonded aggregate. This work leverages a recently developed technique of scaling hydroxyl stretching absorbances in the mid-infrared region with a continuous attenuation coefficient function that produces integrated areas which directly correlate to hydroxyl concentrations. After scaling, the hydroxyl absorbance is fitted with five curves, of which four are dominant. These four curves represent unique hydroxyl configurations and translate to specific aggregate structures. The technique is applied to ethanol and 1-butanol. The resulting population distributions of hydrogen-bonded hydroxyl configurations are compared with the resummed thermodynamic perturbation theory (RTPT) model for linear chains as a function of concentration and temperature. The model is demonstrated to capture the critical features of the distributions.


Assuntos
1-Butanol , Etanol , Etanol/química , Ligação de Hidrogênio , Hidrogênio , Radical Hidroxila , Cicloexanos
2.
J Phys Chem A ; 124(16): 3077-3089, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32181659

RESUMO

Hydrogen bonding has profound effects on the behavior of molecules. Fourier-transform infrared spectroscopy is the technique most commonly used to qualitatively identify hydrogen-bonding moieties present in a chemical sample. However, quantitative analysis of infrared (IR) spectra is nontrivial for the hydroxyl stretching region where hydrogen bonding is most prominently expressed in organic alcohols and water. Specifically, the breadth and extreme overlap of the O-H stretching bands, and the order of magnitude variability of their IR attenuation coefficients complicates the analysis. In the present work, sequential molecular dynamics simulations and quantum mechanical calculations are used to develop a function to relate the integrated IR attenuation coefficient to the vibrational frequencies of hydroxyl bands across the O-H stretching region. This relationship is then used as a guide to develop an attenuation coefficient scaling function to quantitatively determine concentrations of alcohols in a hydrocarbon solution from experimental IR spectra by integration across the entire hydroxyl frequency range.

3.
Nature ; 505(7482): 239-43, 2014 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-24291791

RESUMO

The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.


Assuntos
Biocombustíveis/provisão & distribuição , Metabolismo dos Carboidratos , Etanol/metabolismo , Engenharia Genética , Phaeophyceae/metabolismo , Saccharomyces cerevisiae/metabolismo , Alginatos/metabolismo , Anaerobiose , Ascomicetos/genética , Ascomicetos/metabolismo , Biotecnologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Evolução Molecular , Fermentação , Teste de Complementação Genética , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/metabolismo , Manitol/metabolismo , Phaeophyceae/genética , Ácido Quínico/metabolismo , Reprodutibilidade dos Testes , Saccharomyces cerevisiae/genética , Alga Marinha/genética , Alga Marinha/metabolismo , Ácidos Urônicos/metabolismo
4.
Bioresour Technol ; 102(5): 4270-2, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21215617

RESUMO

An attractive approach to improving cold flow properties of biodiesel is to transesterify fatty acid methyl esters with higher alcohols such as n-butanol or with branched alcohols such as isopropanol. In this study, the reaction kinetics of Amberlyst-15 catalyzed transesterification of methyl stearate, a model biodiesel compound, with n-butanol have been examined. After identifying conditions to minimize both internal and external mass transfer resistances, the effects of catalyst loading, temperature, and the mole ratio of n-butanol to methyl stearate in the transesterification reaction were investigated. Experimental data were fit to a pseudo-homogeneous, activity-based kinetic model with inclusion of etherification reactions to appropriately characterize the transesterification system.


Assuntos
1-Butanol/química , Modelos Químicos , Estearatos/química , Estirenos/química , Catálise , Esterificação , Cinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...