Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 7: 1601, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27833626

RESUMO

The main objective of this study was to apply the air-coupled broad-band ultrasonic spectroscopy in attached transpiring leaves of Vitis vinifera L. to monitor changes in leaf water potential (Ψ) through the measurements of the standardized value of the resonant frequency associated with the maximum transmitance (f/fo). With this purpose, the response of grapevine to a drought stress period was investigated in terms of leaf water status, ultrasounds, gas exchange and sugar accumulation. Two strong correlations were obtained between f/fo and Ψ measured at predawn (pd) and at midday (md) with different slopes. This fact implied the existence of two values of Ψ for a given value of f/fo, which was taken as a sign that the ultrasonic technique was not directly related to the overall Ψ, but only to one of its components: the turgor pressure (P). The difference in Ψ at constant f/fo (δ) was found to be dependent on net CO2 assimilation (A) and might be used as a rough estimator of photosynthetic activity. It was then, the other main component of Ψ, osmotic potential (π), the one that may have lowered the values of md Ψ with respect to pd Ψ by the accumulation of sugars associated to net CO2 assimilation. This phenomenon suggests the existence of a diurnal osmotic adjustment in this species associated to sugars production in well-watered plants.

2.
Plant Sci ; 193-194: 70-84, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22794920

RESUMO

Mesophyll diffusion conductance to CO(2) is a key photosynthetic trait that has been studied intensively in the past years. The intention of the present review is to update knowledge of g(m), and highlight the important unknown and controversial aspects that require future work. The photosynthetic limitation imposed by mesophyll conductance is large, and under certain conditions can be the most significant photosynthetic limitation. New evidence shows that anatomical traits, such as cell wall thickness and chloroplast distribution are amongst the stronger determinants of mesophyll conductance, although rapid variations in response to environmental changes might be regulated by other factors such as aquaporin conductance. Gaps in knowledge that should be research priorities for the near future include: how different is mesophyll conductance among phylogenetically distant groups and how has it evolved? Can mesophyll conductance be uncoupled from regulation of the water path? What are the main drivers of mesophyll conductance? The need for mechanistic and phenomenological models of mesophyll conductance and its incorporation in process-based photosynthesis models is also highlighted.


Assuntos
Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Transporte Biológico , Parede Celular/metabolismo , Cloroplastos/metabolismo , Difusão , Folhas de Planta/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...