Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
1.
World J Diabetes ; 15(5): 958-976, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38766439

RESUMO

BACKGROUND: Synaptotagmins (SYTs) are a family of 17 membrane transporters that function as calcium ion sensors during the release of Ca2+-dependent neurotransmitters and hormones. However, few studies have reported whether members of the SYT family play a role in glucose uptake in diabetic retinopathy (DR) through Ca2+/glucose transporter-1 (GLUT1) and the possible regulatory mechanism of SYTs. AIM: To elucidate the role of the SYT family in the regulation of glucose transport in retinal pigment epithelial cells and explore its potential as a therapeutic target for the clinical management of DR. METHODS: DR was induced by streptozotocin in C57BL/6J mice and by high glucose medium in human retinal pigment epithelial cells (ARPE-19). Bioinformatics analysis, reverse transcriptase-polymerase chain reaction, Western blot, flow cytometry, ELISA, HE staining, and TUNEL staining were used for analysis. RESULTS: Six differentially expressed proteins (SYT2, SYT3, SYT4, SYT7, SYT11, and SYT13) were found between the DR and control groups, and SYT4 was highly expressed. Hyperglycemia induces SYT4 overexpression, manipulates Ca2+ influx to induce GLUT1 fusion with the plasma membrane, promotes abnormal expression of the glucose transporter GLUT1 and excessive glucose uptake, induces ARPE-19 cell apoptosis, and promotes DR progression. Parkin deficiency inhibits the proteasomal degradation of SYT4 in DR, resulting in SYT4 accumulation and enhanced GLUT1 fusion with the plasma membrane, and these effects were blocked by oe-Parkin treatment. Moreover, dysregulation of the myelin transcription factor 1 (Myt1)-induced transcription of SYT4 in DR further activated the SYT4-mediated stimulus-secretion coupling process, and this process was inhibited in the oe-MYT1-treated group. CONCLUSION: Our study reveals the key role of SYT4 in regulating glucose transport in retinal pigment epithelial cells during the pathogenesis of DR and the underlying mechanism and suggests potential therapeutic targets for clinical DR.

2.
J Nat Med ; 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775895

RESUMO

The practice of Chinese herbal medicines for the treatment of COVID-19 in China played an essential role for the control of mortality rate and reduction of recovery time. The iridoids is one of the main constituents of many heat-clearing and detoxifying Chinese medicines that were largely planted and frequently used in clinical practice. Twenty-three representative high content iridoids from several staple Chinese medicines were obtained and tested by a SARS-CoV-2 pseudo-virus entry-inhibition assay on HEK-293 T/ACE2 cells, a live HCoV-OC43 virus infection assay on HRT-18 cells, and a SARS-CoV-2 3CL protease inhibitory FRET assay followed by molecular docking simulation. The anti-pulmonary inflammation activities were further evaluated on a TNF-α induced inflammation model in A549 cells and preliminary SARs were concluded. The results showed that specnuezhenide (7), cornuside (12), neonuezhenide (15), and picroside III (21) exhibited promising antiviral activities, and neonuezhenide (15) could inhibit 3CL protease with an IC50 of 14.3 µM. Docking computation showed that compound 15 could bind to 3CL protease through a variety of hydrogen bonding and hydrophobic interactions. In the anti-pulmonary inflammation test, cornuside (12), aucubin (16), monotropein (17), and shanzhiside methyl ester (18) could strongly decrease the content of IL-1ß and IL-8 at 10 µM. Compound 17 could also upregulate the expression of the anti-inflammatory cytokine IL-10 significantly. The iridoids exhibited both anti-coronavirus and anti-pulmonary inflammation activities for their significance of existence in Chinese herbal medicines, which also provided a theoretical basis for their potential utilization in the pharmaceutical and food industries.

3.
J Ethnopharmacol ; 328: 118116, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548118

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Aristolochic acids (AAs) are naturally occurring nitro phenanthrene carboxylic acids primarily found in plants of the Aristolochiaceae family. Aristolochic acid D (AAD) is a major constituent in the roots and rhizomes of the Chinese herb Xixin (the roots and rhizomes of Asarum heterotropoides F. Schmidt), which is a key material for preparing a suite of marketed Chinese medicines. Structurally, AAD is nearly identical to the nephrotoxic aristolochic acid I (AAI), with an additional phenolic group at the C-6 site. Although the nephrotoxicity and metabolic pathways of AAI have been well-investigated, the metabolic pathway(s) of AAD in humans and the influence of AAD metabolism on its nephrotoxicity has not been investigated yet. AIM OF THE STUDY: To identify the major metabolites of AAD in human tissues and to characterize AAD O-glucuronidation kinetics in different enzyme sources, as well as to explore the influence of AAD O-glucuronidation on its nephrotoxicity. MATERIALS AND METHODS: The O-glucuronide of AAD was biosynthesized and its chemical structure was fully characterized by both 1H-NMR and 13C-NMR. Reaction phenotyping assays, chemical inhibition assays, and enzyme kinetics analyses were conducted to assess the crucial enzymes involved in AAD O-glucuronidation in humans. Docking simulations were performed to mimic the catalytic conformations of AAD in human UDP-glucuronosyltransferases (UGTs), while the predicted binding energies and distances between the deprotonated C-6 phenolic group of AAD and the glucuronyl moiety of UDPGA in each tested human UGT isoenzyme were measured. The mitochondrial membrane potentials (MMP) and reactive oxygen species (ROS) levels in HK-2 cells treated with either AAI, or AAD, or AAD O-glucuronide were tested, to elucidate the impact of O-glucuronidation on the nephrotoxicity of AAD. RESULTS: AAD could be rapidly metabolized in human liver and intestinal microsomes (HLM and HIM, respectively) to form a mono-glucuronide, which was purified and fully characterized as AAD-6-O-ß-D-glucuronide (AADG) by NMR. UGT1A1 was the predominant enzyme responsible for AAD-6-O-glucuronidation, while UGT1A9 contributed to a lesser extent. AAD-6-O-glucuronidation in HLM, HIM, UGT1A1 and UGT1A9 followed Michaelis-Menten kinetics, with the Km values of 4.27 µM, 9.05 µM, 3.87 µM, and 7.00 µM, respectively. Docking simulations suggested that AAD was accessible to the catalytic cavity of UGT1A1 or UGT1A9 and formed catalytic conformations. Further investigations showed that both AAI and AAD could trigger the elevated intracellular ROS levels and induce mitochondrial dysfunction and in HK-2 cells, but AADG was hardly to trigger ROS accumulation and mitochondrial dysfunction. CONCLUSION: Collectively, UGT1A-catalyzed AAD 6-O-glucuronidation represents a crucial detoxification pathway of this naturally occurring AAI analogs in humans, which is very different from that of AAI.


Assuntos
Ácidos Aristolóquicos , Doenças Mitocondriais , Humanos , Ácidos Aristolóquicos/toxicidade , Glucuronídeos/metabolismo , Microssomos Hepáticos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Glucuronosiltransferase/metabolismo , Cinética , Catálise , Difosfato de Uridina/metabolismo
4.
Comput Methods Programs Biomed ; 248: 108137, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38520784

RESUMO

BACKGROUND AND OBJECTIVE: Clinical pharmacological modeling and statistical analysis software is an essential basic tool for drug development and personalized drug therapy. The learning curve of current basic tools is steep and unfriendly to beginners. The curve is even more challenging in cases of significant individual differences or measurement errors in data, resulting in difficulties in accurately estimating pharmacokinetic parameters by existing fitting algorithms. Hence, this study aims to explore a new optimized parameter fitting algorithm that reduces the sensitivity of the model to initial values and integrate it into the CPhaMAS platform, a user-friendly online application for pharmacokinetic data analysis. METHODS: In this study, we proposed an optimized Nelder-Mead method that reinitializes simplex vertices when trapped in local solutions and integrated it into the CPhaMAS platform. The CPhaMAS, an online platform for pharmacokinetic data analysis, includes three modules: compartment model analysis, non-compartment analysis (NCA) and bioequivalence/bioavailability (BE/BA) analysis. Our proposed CPhaMAS platform was evaluated and compared with existing WinNonlin. RESULTS: The platform was easy to learn and did not require code programming. The accuracy investigation found that the optimized Nelder-Mead method of the CPhaMAS platform showed better accuracy (smaller mean relative error and higher R2) in two-compartment and extravascular administration models when the initial value was set to true and abnormal values (10 times larger or smaller than the true value) compared with the WinNonlin. The mean relative error of the NCA calculation parameters of CPhaMAS and WinNonlin was <0.0001 %. When calculating BE for conventional, high-variability and narrow-therapeutic drugs. The main statistical parameters of the parameters Cmax, AUCt, and AUCinf in CPhaMAS have a mean relative error of <0.01% compared to WinNonLin. CONCLUSIONS: In summary, CPhaMAS is a user-friendly platform with relatively accurate algorithms. It is a powerful tool for analysing pharmacokinetic data for new drug development and precision medicine.


Assuntos
Algoritmos , Software , Modelos Teóricos , Preparações Farmacêuticas , Projetos de Pesquisa
5.
J Clin Nurs ; 33(6): 2084-2098, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38477050

RESUMO

BACKGROUND: Sleep disturbance is highly prevalent among post-operative cardiac patients, with negative impacts on surgical recovery and rehabilitation. Post-operative pain and anxiety commonly seen in cardiac surgery patients are associated with poor sleep. Sleep medications commonly used are not ideal with prolonged usage, and non-pharmacological interventions can be good alternatives or complements. AIM: To examine effectiveness of non-pharmacological interventions in post-operative cardiac settings on sleep quality, pain intensity and anxiety. DESIGN: Systematic review and meta-analysis. METHODS: PubMed, CENTRAL, Embase, CINAHL, Scopus, CNKI and ProQuest Dissertations and Theses were searched on 12 October 2022. Randomised controlled trials of non-pharmacological interventions examining sleep quality for adult post-operative cardiac patients were included. Included studies were appraised using Cochrane Risk of Bias tool version 1. Meta-analysis was conducted using RevMan version 5.4.1, and heterogeneity was assessed using I2 statistics and Cochran Q's test. RESULTS: Eighteen studies involving 1701 participants were identified. Coronary artery bypass graft was most common. Non-pharmacological interventions varied in types and duration. All intervention groups were compared to usual care, placebo, no interventions or active comparators. Statistically significant improvement in sleep quality (SMD = -.91, 95% CI = -1.17 to -.65) was found among intervention groups that explored cognitive behavioural therapy, relaxation techniques, exercise, massage, acupressure, aromatherapy, music, eye mask and earplugs. Pain intensity was reduced (SMD = -.63, 95% CI = -1.05 to -.20) with cognitive behavioural therapy, relaxation techniques, massage, music and eye mask. Anxiety was improved (SMD = -.21, 95% CI = -.38 to -.04) with exercise and music. CONCLUSION: The overall use of non-pharmacological interventions can optimise sleep after cardiac surgery. Further research with greater methodological rigour is needed to investigate different intervention-related characteristics while considering potential confounders. RELEVANCE TO CLINICAL PRACTICE: Post-operative cardiac settings can consider incorporating non-pharmacological interventions. Patients and healthcare providers can be better informed about the use of such interventions to improve sleep. REGISTRATION: PROSPERO CRD42022384991.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Qualidade do Sono , Humanos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Transtornos do Sono-Vigília/terapia , Masculino , Ansiedade/terapia , Ansiedade/prevenção & controle , Feminino , Dor Pós-Operatória/terapia
6.
Zhongguo Zhong Yao Za Zhi ; 49(2): 412-419, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403317

RESUMO

Thirteen compounds were isolated and identified from 70% ethanol extract of the roots of Gentiana macrophylla by multi-chromatographic methods, including microporous resin, silica gel, and C_(18) reversed-phase column chromatography, as well as HPLC as follows: macrophylloside G(1), macrophylloside D(2), 5-formyl-2,3-dihydroisocoumarin(3),(+)-medicarpin(4),(+)-syringaresinol(5), liquiritigenin(6),(3R)-sativanone(7),(3R)-3'-O-methylviolanone(8), 4,2',4'-trihydroxychalcone(9), latifolin(10), gentioxepine(11), 6α-hydroxycyclonerolidol(12), and ethyl linoleate(13). Compound 1 was a new benzopyran glycoside. Compounds 4, 6-10, 12, and 13 were isolated for the first time from Gentiana plants. Compounds 1 and 2 showed promising hepatoprotective activity against D-GalN-induced AML12 cell damage at the concentration of 10 µmol·L~(-1), and compound 2 exhibited more significant activity than silybin at the same concentration.


Assuntos
Glicosídeos Cardíacos , Éteres , Gentiana , Gentiana/química , Glicosídeos/farmacologia , Benzopiranos , Glucosídeos
7.
Mol Cell ; 84(4): 760-775.e7, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38215751

RESUMO

Apart from the canonical serotonin (5-hydroxytryptamine [5-HT])-receptor signaling transduction pattern, 5-HT-involved post-translational serotonylation has recently been noted. Here, we report a glyceraldehyde-3-phosphate dehydrogenase (GAPDH) serotonylation system that promotes the glycolytic metabolism and antitumor immune activity of CD8+ T cells. Tissue transglutaminase 2 (TGM2) transfers 5-HT to GAPDH glutamine 262 and catalyzes the serotonylation reaction. Serotonylation supports the cytoplasmic localization of GAPDH, which induces a glycolytic metabolic shift in CD8+ T cells and contributes to antitumor immunity. CD8+ T cells accumulate intracellular 5-HT for serotonylation through both synthesis by tryptophan hydroxylase 1 (TPH1) and uptake from the extracellular compartment via serotonin transporter (SERT). Monoamine oxidase A (MAOA) degrades 5-HT and acts as an intrinsic negative regulator of CD8+ T cells. The adoptive transfer of 5-HT-producing TPH1-overexpressing chimeric antigen receptor T (CAR-T) cells induced a robust antitumor response. Our findings expand the known range of neuroimmune interaction patterns by providing evidence of receptor-independent serotonylation post-translational modification.


Assuntos
Linfócitos T CD8-Positivos , Serotonina , Linfócitos T CD8-Positivos/metabolismo , Serotonina/metabolismo , Serotonina/farmacologia , Processamento de Proteína Pós-Traducional , Transdução de Sinais
8.
Plast Reconstr Surg ; 153(3): 558e-567e, 2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224285

RESUMO

BACKGROUND: During skin expansion, subcutaneous adipose tissue undergoes the greatest change. The adipose layer appears to gradually thin or even disappear in long-term expansion. The response and contribution of adipose tissue to skin expansion remain to be elucidated. METHODS: The authors established a novel expansion model by transplanting luciferase-transgenic adipose tissue into the rat dorsum, followed by integrated expansion, to trace the dynamic changes in subcutaneous adipose tissue during expansion and the migration of adipose tissue-derived cells. In vivo luminescent imaging was performed to continuously track the adipose tissue changes. Histologic analysis and immunohistochemical staining evaluated the regeneration and vascularization of the expanded skin. Growth factor expression in expanded skin with or without adipose tissue was determined to evaluate the paracrine effect of adipose tissue. Adipose tissue-derived cells were traced in vitro by anti-luciferase staining, and their fate was determined by costaining for PDGFRα, DLK1, and CD31. RESULTS: In vivo bioimaging showed that cells in adipose tissue were alive during expansion. After expansion, the adipose tissue exhibited fibrotic-like structures, with more DLK1 + preadipocytes. Skin expanded with adipose tissue was significantly thicker than that without adipose tissue, with more blood vessels and cell proliferation. Vascular endothelial growth factor, epidermal growth factor, and basic fibroblast growth factor expression was higher in adipose tissue than in skin, indicating paracrine support from adipose tissue. Luciferase-positive adipose tissue-derived cells were observed in expanded skin, indicating direct participation in skin regeneration. CONCLUSION: Adipose tissue transplantation can effectively promote long-term skin expansion by contributing to vascularization and cell proliferation by means of various mechanisms. CLINICAL RELEVANCE STATEMENT: The authors' findings suggest that it would be better if the expander pocket is dissected over the superficial fascia to preserve a layer of adipose tissue with skin. In addition, their findings support the treatment of fat grafting when expanded skin presents with thinning.


Assuntos
Transplante de Células-Tronco Mesenquimais , Tela Subcutânea , Ratos , Animais , Tela Subcutânea/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Expansão de Tecido/métodos , Tecido Adiposo/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos
9.
Pest Manag Sci ; 80(4): 1740-1750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38015011

RESUMO

BACKGROUND: Nilaparvata lugens (brown planthopper; BPH) is a significant rice pest in Asia, causing substantial yield losses. Pyramiding BPH resistance genes with diverse resistance traits into rice cultivars is an effective strategy for pest management. However, the response of pyramiding combinations to environmental changes remains unclear. To address this knowledge gap, we investigated three pyramiding rice lines (BPH2 + 32, BPH9 + 32, and BPH18 + 32) in the context of varying climate change conditions, ensuring sufficient N. lugens-rice interactions. Thus, we set three environmental conditions [30/25 °C (day/night) with 500 ppm CO2 concentration, 32/27 °C (day/night) with 600 ppm CO2 concentration, and 35/30 °C (day/night) with 1000 ppm CO2 concentration]. RESULTS: All three pyramiding rice lines maintained the insect resistant ability under the three environmental settings. In particular, the BPH18 + 32 rice line exhibited stronger antibiotic and antixenosis effects against N. lugens. In addition, BPH18 + 32 rice line had better shoot resilience under N. lugens infestation, whereas the performance of the other two selected pyramiding rice lines varied. Thus, although BPH2, BPH9, and BPH18 represent three alleles at the same locus, their resistance levels against N. lugens may vary under distinct climate change scenarios, as evidenced by the performance of N. lugens on the three pyramiding rice lines. CONCLUSION: Our findings indicate that all three tested pyramiding rice lines maintained their insect resistance in the face of diverse climate change scenarios. However, these lines exhibited varied repellent responses and resilience capacities in response to climate change. Thus, the combination of pyramiding genes needs to be considered for future breeding programs. © 2023 Society of Chemical Industry.


Assuntos
Hemípteros , Oryza , Animais , Oryza/genética , Dióxido de Carbono , Mudança Climática , Melhoramento Vegetal , Hemípteros/genética
10.
Am J Otolaryngol ; 45(1): 104073, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37862880

RESUMO

PURPOSE: Biofilms are a significant cause of morbidity in patients with indwelling medical devices. Biofilms pose a potential risk with reusable inner cannulas by increasing the risk of infections. Effective decontamination is thus vital in decreasing bioburden. The current guidelines for cleaning inner cannulas are varied, with multiple techniques being recommended, which are not supported by strong evidence. This randomized, controlled, cross-over study attempted to enumerate the bacterial count of inner cannulas used in tracheostomy patients (n = 60) pre-and post-decontamination with detergent (A) or sterile water (B). MATERIALS AND METHODS: The patients were randomly allocated to sequence A > B or B > A in 1:1 fashion. The saline flushing of the inner cannulas was plated on trypticase soy agar with 5 % sheep blood to enumerate the bacterial count. RESULTS: The mean ratio [Log (CFU)post/Log (CFU)pre]A/[Log (CFU)post/Log (CFU)pre]B based on 53 samples was 0.918 ± 0.470, two-sided 90 % confidence interval (CI) 0.812, 1.024. The equivalence criterion was met as the mean ratio after cleaning fell within the equivalence region of 0.8 and 1.25. CONCLUSION: This study demonstrated the microbiological efficacy of both detergent and sterile water in the decontamination of inner cannulas, and that sterile water was not less effective than detergent in reducing the bacterial load for safe re-use of inner cannulas. This has the potential to promote cost savings for patients with tracheostomy, both in the hospital and the community. The study findings may also be relevant in formulating tracheostomy care policies.


Assuntos
Cânula , Traqueostomia , Humanos , Contagem de Colônia Microbiana , Estudos Cross-Over , Detergentes , Água
11.
Phytochemistry ; 217: 113920, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951561

RESUMO

Ten lignans, including six previously undescribed phenolic ester glycosyl lignans (1-6), were isolated from a well-known traditional Chinese medicine, Qin-Jiao, which is the dry root of Gentiana macrophylla Pall. (Gentianaceae). Their structures were determined by spectroscopic and chemical methods, especially 2D NMR techniques. Quantum chemical calculations of theoretical ECD spectra allowed the determination of their absolute configurations. Refer to its traditional applications for the treatment of rheumatic arthralgia and hepatopathy, these compounds were evaluated on a TNF-α induced MH7A human synoviocyte inflammation model and a D-GalN induced AML12 hepatocyte injury model. Compounds 1, 2, 5, and 6 significantly reduced the release of proinflammatory cytokine IL-1ß in MH7A cells at 15 µM and they also could strongly protect AML12 cells against D-GalN injury at 30 µM. Flow cytometry and Western blot analysis showed that compound 5 ameliorated D-GalN induced AML12 cell apoptosis by upregulating the expression of anti-apoptotic Bcl-2 protein and down-regulating the expression of pro-apoptotic Bax protein.


Assuntos
Medicamentos de Ervas Chinesas , Gentiana , Lignanas , Humanos , Gentiana/química , Lignanas/farmacologia , Glucosídeos/farmacologia , Glucosídeos/química , Medicamentos de Ervas Chinesas/farmacologia , Inflamação
12.
World J Diabetes ; 14(11): 1693-1709, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077798

RESUMO

BACKGROUND: In contrast to overt diabetes mellitus (DM), gestational DM (GDM) is defined as impaired glucose tolerance induced by pregnancy, which may arise from exaggerated physiologic changes in glucose metabolism. GDM prevalence is reported to be as high as 20% among pregnancies depending on the screening method, gestational age, and the population studied. Maternal and fetal effects of uncontrolled GDM include stillbirth, macrosomia, neonatal diabetes, birth trauma, and subsequent postpartum hemorrhage. Therefore, it is essential to find the potential target population and associated predictive and preventive measures for future intensive peripartum care. AIM: To review studies that explored the cellular and molecular mechanisms of GDM as well as predictive measures and prevention strategies. METHODS: The search was performed in the Medline and PubMed databases using the terms "gestational diabetes mellitus," "overt diabetes mellitus," and "insulin resistance." In the literature, only full-text articles were considered for inclusion (237 articles). Furthermore, articles published before 1997 and duplicate articles were excluded. After a final review by two experts, all studies (1997-2023) included in the review met the search terms and search strategy (identification from the database, screening of the studies, selection of potential articles, and final inclusion). RESULTS: Finally, a total of 79 articles were collected for review. Reported risk factors for GDM included maternal obesity or overweight, pre-existing DM, and polycystic ovary syndrome. The pathophysiology of GDM involves genetic variants responsible for insulin secretion and glycemic control, pancreatic ß cell depletion or dysfunction, aggravated insulin resistance due to failure in the plasma membrane translocation of glucose transporter 4, and the effects of chronic, low-grade inflammation. Currently, many antepartum measurements including adipokines (leptin), body mass ratio (waist circumference and waist-to-hip ratio], and biomarkers (microRNA in extracellular vesicles) have been studied and confirmed to be useful markers for predicting GDM. For preventing GDM, physical activity and dietary approaches are effective interventions to control body weight, improve glycemic control, and reduce insulin resistance. CONCLUSION: This review explored the possible factors that influence GDM and the underlying molecular and cellular mechanisms of GDM and provided predictive measures and prevention strategies based on results of clinical studies.

13.
World J Clin Cases ; 11(31): 7553-7561, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38078133

RESUMO

BACKGROUND: Compare the diagnostic performance of ultrasound (US), magnetic resonance imaging (MRI), and serum tumor markers alone or in combination for detecting ovarian tumors. AIM: To investigate the diagnostic value of US, MRI combined with tumor markers in ovarian tumors. METHODS: The data of 110 patients with ovarian tumors, confirmed by surgery and pathology, were collected in our hospital from February 2018 to May 2023. The dataset included 60 cases of benign tumors and 50 cases of malignant tumors. Prior to surgery, all patients underwent preoperative US and MRI examinations, as well as serum tumor marker tests [carbohydrate antigen 125 (CA125), human epididymis protein 4 (HE4)]. The aim of the study was to compare the diagnostic performance of these three methods individually and in combination for ovarian tumors. RESULTS: This study found statistically significant differences in the ultrasonic imaging characteristics between benign and malignant tumors. These differences include echo characteristics, presence or absence of a capsule, blood flow resistance index, clear tumor shape, and blood flow signal display rate (P < 0.05). The apparent diffusion coefficient values of the solid and cystic parts in benign tumors were found to be higher compared to malignant tumors (P < 0.05). Additionally, the time-intensity curve image features of benign and malignant tumors showed significant statistical differences (P < 0.05). The levels of serum CA125 and HE4 in benign tumors were lower than those in malignant tumors (P < 0.05). The combined use of US, MRI, and tumor markers in the diagnosis of ovarian tumors demonstrates higher accuracy, sensitivity, and specificity compared to using each method individually (P < 0.05). CONCLUSION: US, MRI, and tumor markers each have their own advantages and disadvantages when it comes to diagnosing ovarian tumors. However, by combining these three methods, we can significantly enhance the accuracy of ovarian tumor diagnosis, enabling early detection and identification of the tumor's nature, and providing valuable guidance for clinical treatment.

14.
J Phys Chem B ; 127(49): 10469-10477, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38018897

RESUMO

Antifreeze proteins (AFPs) are biodegradable inhibitors that effectively prevent the formation of natural gas hydrates that block pipelines. In this study, molecular dynamics simulations were employed to establish a kinetic model of the hyperactive insect antifreeze protein (Tenebrio molitor, TmAFP) and its mutants to inhibit the growth of sI natural methane hydrate. Simulations revealed that the hydrophobic and hydrophilic groups of threonine (Thr) residues at hydrate-binding sites played a synergistic role in binding hydrates. The hydrophobic groups anchored TmAFP to the hydrate surface through residues Thr39-Thr65 by migrating pendant hydrophobic methyl groups to the hydrate semicages. The hydrophilic groups stabilized TmAFP by hydrogen bonding with water molecules and integrating them into a quasi-hydrate structure, which more effectively inhibited hydrate growth. The results suggest that the hydrate growth inhibition is attributed to both the shape complementarity and the flexibility of binding residues. The synergy between hydrophobic and hydrophilic groups provides guidance for the design of more effective hydrate inhibitors.


Assuntos
Gelo , Água , Água/química , Proteínas Anticongelantes/química , Simulação de Dinâmica Molecular , Sítios de Ligação
15.
J Med Internet Res ; 25: e45044, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37856179

RESUMO

BACKGROUND: The growing global burden of visual impairment necessitates better population eye screening for early detection of eye diseases. However, accessibility to testing is often limited and centralized at in-hospital settings. Furthermore, many eye screening programs were disrupted by the COVID-19 pandemic, presenting an urgent need for out-of-hospital solutions. OBJECTIVE: This study investigates the performance of a novel remote perimetry application designed in a virtual reality metaverse environment to enable functional testing in community-based and primary care settings. METHODS: This was a prospective observational study investigating the performance of a novel remote perimetry solution in comparison with the gold standard Humphrey visual field (HVF) perimeter. Subjects received a comprehensive ophthalmologic assessment, HVF perimetry, and remote perimetry testing. The primary outcome measure was the agreement in the classification of overall perimetry result normality by the HVF (Swedish interactive threshold algorithm-fast) and testing with the novel algorithm. Secondary outcome measures included concordance of individual testing points and perimetry topographic maps. RESULTS: We recruited 10 subjects with an average age of 59.6 (range 28-81) years. Of these, 7 (70%) were male and 3 (30%) were female. The agreement in the classification of overall perimetry results was high (9/10, 90%). The pointwise concordance in the automated classification of individual test points was 83.3% (8.2%; range 75%-100%). In addition, there was good perimetry topographic concordance with the HVF in all subjects. CONCLUSIONS: Remote perimetry in a metaverse environment had good concordance with gold standard perimetry using the HVF and could potentially avail functional eye screening in out-of-hospital settings.


Assuntos
Glaucoma , Testes de Campo Visual , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Glaucoma/diagnóstico , Pandemias , Projetos Piloto , Reprodutibilidade dos Testes , Testes de Campo Visual/métodos , Campos Visuais , Estudos Prospectivos
16.
Molecules ; 28(18)2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37764389

RESUMO

Four previously undescribed terpenoid glucosides, including one sesquiterpenoid di-glucoside (1), two new iridoid glucosides (2, 3), and a new triterpenoid tri-glucoside (4), were isolated from a 70% ethanol extract of the root of Gentiana macrophylla (Gentianaceae), along with eight known terpenoids. Their structures were determined by spectroscopic techniques, including 1D, 2D NMR, and HRMS (ESI), as well as chemical methods. The absolute configuration of compound 1 was determined by quantum chemical calculation of its theoretical electronic circular dichroism (ECD) spectrum. The sugar moieties of all the new compounds were confirmed to be D-glucose by GC analysis after acid hydrolysis and acetylation. Anti-pulmonary inflammation activity of the iridoids were evaluated on a TNF-α induced inflammation model in A549 cells. Compound 2 could significantly alleviate the release of proinflammatory cytokines IL-1ß and IL-8 and increase the expression of anti-inflammatory cytokine IL-10.


Assuntos
Gentiana , Pneumonia , Humanos , Terpenos/farmacologia , Fator de Necrose Tumoral alfa , Glucosídeos/farmacologia , Células A549 , Citocinas , Extratos Vegetais/farmacologia
17.
Eur J Pharm Sci ; 190: 106565, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37586437

RESUMO

PURPOSE: This study aimed to assess the pharmacokinetics, safety, and efficacy of GM1 in healthy Chinese subjects and patients with multiple myeloma. METHODS: The data used in this study was derived from two dose-escalation trials: GM1-101, involving 70 healthy subjects, and GM1-201, which included 160 multiple myeloma patients. Population pharmacokinetics (PopPK) analysis was conducted on a subset of 90 participants using a nonlinear mixed-effects approach, and potential covariates were explored quantitatively. Observations of any abnormalities in vital signs, physical examinations, laboratory tests, and electrocardiograms during the study period, along with any spontaneously reported and directly observed adverse events, were documented for safety evaluation. Furthermore, neurotoxicity scales were used to assess the efficacy of GM1 as a prophylaxis for chemotherapy-induced peripheral neuropathy and to perform exposure-response analyses in conjunction with pharmacokinetic parameters. RESULTS: A one-compartment model with first-order elimination best characterized the pharmacokinetics of GM1. The clearance and volume of distribution, as estimated by the final model, were 0.0942 L/h and 3.27 L for GM1-A, and 0.0714 L/h and 2.82 L for GM1-B, respectively. Covariates such as sex, body weight, and albumin significantly influenced pharmacokinetic parameters, yet the variation in steady-state exposure between subjects and reference subjects was less than 45% within their 90% confidence interval. Adverse reactions related to GM1 occurred in 20 (28.6%) and 57 (35.6%) subjects in the GM1-101 and GM1-201 cohorts, respectively. The changes in TNSc and FACT-Ntx scores from baseline at the end of periods 4 and 6 were lower in each GM1 dose group compared to the blank control group. The 400 mg dose group of GM1 displayed greater effectiveness than other dose groups. However, exposure-response analysis revealed no significant modification in efficacy with increasing GM1 exposure. CONCLUSIONS: This study provides the first population pharmacokinetic analysis of GM1. GM1 exhibits a favorable safety profile among healthy subjects and patients with multiple myeloma. GM1 proved effective in mitigating chemotherapy-induced peripheral neuropathy, but this study observed no significant correlation between its efficacy and exposure. TRIAL REGISTRATION NUMBERS: ChiCTR2000041283 and ChiCTR2000041283.


Assuntos
Antineoplásicos , Mieloma Múltiplo , Doenças do Sistema Nervoso Periférico , Humanos , Gangliosídeo G(M1) , Voluntários Saudáveis , Mieloma Múltiplo/tratamento farmacológico , Doenças do Sistema Nervoso Periférico/induzido quimicamente , Antineoplásicos/efeitos adversos
18.
Chin J Dent Res ; 26(2): 93-104, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37395521

RESUMO

OBJECTIVE: To analyse the pan-genome of three black-pigmented periodontal pathogens: Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens. METHODS: Pan-genome analyses of 66, 33 and 5 publicly available whole-genome sequences of P. gingivalis, P. intermedia and P. nigrescens, respectively, were performed using Pan-genome Analysis Pipeline software (version 1.2.1; Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, PR China). Phylogenetic trees were constructed based on the entire pan-genome and single nucleotide polymorphisms within the core genome. The distribution and abundance of virulence genes in the core and dispensable genomes were also compared in the three species. RESULTS: All three species possess an open pan-genome. The core genome of P. gingivalis, P. intermedia and P. nigrescens included 1001, 1514 and 1745 orthologous groups, respectively, which were mainly related to basic cellular functions such as metabolism. The dispensable genome of P. gingivalis, P. intermedia and P. nigrescens was composed of 2814, 2689 and 906 orthologous groups, respectively, and it was enriched in genes involved in pathogenicity or with unknown functions. Phylogenetic trees presented a clear separation of P. gingivalis, P. intermedia and P. nigrescens, verifying the reclassification of the black-pigmented species. Furthermore, the three species shared almost the same virulence factors involved in adhesion, proteolysis and evasion of host defences. Some of these virulence genes were conserved across species whereas others belonged to the dispensable genome, which might be acquired through horizontal gene transfer. CONCLUSION: This study highlighted the usefulness of pan-genome analysis to infer evolutionary cues for black-pigmented species, indicating their homology and phylogenomic diversity.


Assuntos
Porphyromonas gingivalis , Prevotella , Prevotella/genética , Prevotella/metabolismo , Filogenia , Prevotella intermedia/genética , Prevotella intermedia/metabolismo , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/metabolismo , Prevotella nigrescens/genética
19.
Front Endocrinol (Lausanne) ; 14: 1187882, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37347115

RESUMO

Background: Coronavirus disease 2019 (COVID-19) is a highly contagious respiratory disease that has posed a serious threat to people's daily lives and caused an unprecedented challenge to public health and people's health worldwide. Lung squamous cell carcinoma (LUSC) is a common type of lung malignancy with a highly aggressive nature and poor prognosis. Patients with LUSC could be at risk for COVID-19, We conducted this study to examine the potential for naringenin to develop into an ideal medicine and investigate the underlying action mechanisms of naringenin in COVID-19 and LUSC due to the anti-viral, anti-tumor, and anti-inflammatory activities of naringenin. Methods: LUSC related genes were obtained from TCGA, PharmGKB, TTD,GeneCards and NCBI, and then the transcriptome data for COVID-19 was downloaded from GEO, DisGeNET, CTD, DrugBank, PubChem, TTD, NCBI Gene, OMIM. The drug targets of Naringenin were revealed through CTD, BATMAN, TCMIP, SymMap, Chemical Association Networks, SwissTargetPrediction, PharmMapper, ECTM, and DGIdb. The genes related to susceptibility to COVID-19 in LUSC patients were obtained through differential analysis. The interaction of COVID-19/LUSC related genes was evaluated and demonstrated using STRING to develop a a COX risk regression model to screen and evaluate the association of genes with clinical characteristics. To investigate the related functional and pathway analysis of the common targets of COVID-19/LUSC and Naringenin, KEGG and GO enrichment analysis were employed to perform the functional analysis of the target genes. Finally, The Hub Gene was screened and visualized using Cytoscape, and molecular docking between the drug and the target was performed using Autodock. Results: We discovered numerous COVID-19/LUSC target genes and examined their prognostic value in LUSC patients utilizing a variety of bioinformatics and network pharmacology methods. Furthermore, a risk score model with strong predictive performance was developed based on these target genes to assess the prognosis of LUSC patients with COVID-19. We intersected the therapeutic target genes of naringenin with the LUSC, COVID-19-related targets, and identified 354 common targets, which could be used as potential target genes for naringenin to treat COVID-19/LUSC. The treatment of COVID-19/LUSC with naringenin may involve oxidative stress, anti-inflammatory, antiviral, antiviral, apoptosis, immunological, and multiple pathways containing PI3K-Akt, HIF-1, and VEGF, according to the results of the GO and KEGG enrichment analysis of these 354 common targets. By constructing a PPI network, we ascertained AKT1, TP53, SRC, MAPK1, MAPK3, and HSP90AA1 as possible hub targets of naringenin for the treatment of COVID-19/LUSC. Last but not least, molecular docking investigations showed that naringenin has strong binding activity in COVID-19/LUSC. Conclusion: We revealed for the first time the pharmacological targets and potential molecular processes of naringenin for the treatment of COVID-19/LUSC. However, these results need to be confirmed by additional research and validation in real LUSC patients with COVID-19.


Assuntos
COVID-19 , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , COVID-19/epidemiologia , COVID-19/genética , Antivirais
20.
Int J Med Sci ; 20(6): 810-817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37213666

RESUMO

Interferon gamma (IFNγ) is a cytokine implicated in the pathogenesis of autoimmune diseases. SAM and HD domain-containing protein 1 (SAMHD1) is an IFNγ-inducible protein that modulates cellular dNTP levels. Mutations in the human SAMHD1 gene cause Aicardi-Goutières (AG) syndrome, an autoimmune disease sharing similar clinical features with systemic lupus erythematosus (SLE). Klotho is an anti-inflammatory protein which suppresses aging through multiple mechanisms. Implication of Klotho in autoimmune response is identified in rheumatologic diseases such as SLE. Little information exists regarding the effect of Klotho in lupus nephritis, one of the prevalent symptoms of SLE. The present study verified the effect of IFNγ on SAMHD1 and Klotho expression in MES-13 glomerular mesangial cells, a special cell type in glomerulus that is critically involved in lupus nephritis. IFNγ upregulated SAMHD1 expression in MES-13 cells through the Janus kinase-signal transducer and activator of transcription 1 (JAK-STAT1) and the nuclear factor kappa B (NFκB) signaling pathways. IFNγ decreased Klotho protein expression in MES-13 cells. Treatment of MES-13 cells with recombinant Klotho protein inhibited SAMHD1 expression by blocking IFNγ-induced NFκB nuclear translocation, but showed no effect on JAK-STAT1 signaling. Collectively, our findings support the protective role of Klotho in attenuating lupus nephritis through the inhibition of IFNγ-induced SAMHD1 expression and IFNγ downstream signaling in MES-13 cells.


Assuntos
Nefrite Lúpica , NF-kappa B , Humanos , Células Cultivadas , Interferon gama/metabolismo , Nefrite Lúpica/genética , Células Mesangiais/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/genética , Proteína 1 com Domínio SAM e Domínio HD/metabolismo , Proteína 1 com Domínio SAM e Domínio HD/farmacologia , Receptor de Interferon gama
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...