Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pacing Clin Electrophysiol ; 47(3): 373-382, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38341623

RESUMO

INTRODUCTION: Takotsubo cardiomyopathy (TTC), also known as stress-induced cardiomyopathy, resembles acute heart failure syndrome but lacks disease-specific diagnosis and treatment strategies. TTC accounts for approximately 5-6% of all suspected cases of acute coronary syndrome in women. At present, animal models of TTC are often created by large amounts of exogenous catecholamines such as isoproterenol. However, isoproterenol injection cannot fully simulate the onset of stress-induced cardiomyopathy in humans since stress is not an instantaneous event. METHODS: Rats were immobilized for 6 h per day for 1-14 days. To examine whether the TTC model was successful, echocardiography was employed; Elisa detected serum sympathetic activation markers; and the Open-Field test (OFT) was used to analyze behavioral changes in rats after stress. Western blot and histology were used to assess sympathetic remodeling, inflammation levels, and fibrosis; qRT-PCR was used to explore the levels of fibrosis and myocardial hypertrophy. The electrical stability of ventricular was determined by electrophysiological testing. RESULTS: The rats showed severe stress behavior and local sympathetic remodeling of the heart after only 1 day of stress. After 3 days of stress, the induction of ventricular tachyarrhythmia increased prominently. The highest incidence of TTC in rats was at 5 days of immobilization stress. The pathological left ventricular remodeling caused by immobilization (IMO) stress includes inflammatory infiltration, fibrosis, and myocardial hypertrophy. CONCLUSIONS: Our study confirms the hypothesis that IMO stress can mimic Takotsubo cardiomyopathy, and the various effects on the heart depending on the duration of IMO stress. We observed the highest incidence of TTC occurred after 5 days of stress. Furthermore, there is a gradual occurrence of electrical and structural remodeling as the stress duration prolongs.


Assuntos
Cardiomiopatia de Takotsubo , Humanos , Feminino , Animais , Ratos , Cardiomiopatia de Takotsubo/diagnóstico , Isoproterenol , Coração , Fibrose , Hipertrofia/complicações
2.
Front Immunol ; 14: 1078731, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36776884

RESUMO

Background: Epilepsy is a disorder that can manifest as abnormalities in neurological or physical function. Stress cardiomyopathy is closely associated with neurological stimulation. However, the mechanisms underlying the interrelationship between epilepsy and stress cardiomyopathy are unclear. This paper aims to explore the genetic features and potential molecular mechanisms shared in epilepsy and stress cardiomyopathy. Methods: By analyzing the epilepsy dataset and stress cardiomyopathy dataset separately, the intersection of the two disease co-expressed differential genes is obtained, the co-expressed differential genes reveal the biological functions, the network is constructed, and the core modules are identified to reveal the interaction mechanism, the co-expressed genes with diagnostic validity are screened by machine learning algorithms, and the co-expressed genes are validated in parallel on the epilepsy single-cell data and the stress cardiomyopathy rat model. Results: Epilepsy causes stress cardiomyopathy, and its key pathways are Complement and coagulation cascades, HIF-1 signaling pathway, its key co-expressed genes include SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3. The key immune cell subpopulations localized by single-cell data are the T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup. Conclusion: We believe epilepsy causing stress cardiomyopathy results from a multi-gene, multi-pathway combination. We identified the core co-expressed genes (SPOCK2, CTSZ, HLA-DMB, ALDOA, SFRP1, ERBB3) and the pathways that function in them (Complement and coagulation cascades, HIF-1 signaling pathway, JAK-STAT signaling pathway), and finally localized their key cellular subgroups (T_cells subgroup, Microglia subgroup, Macrophage subgroup, Astrocyte subgroup, and Oligodendrocytes subgroup). Also, combining cell subpopulations with hypercoagulability as well as sympathetic excitation further narrowed the cell subpopulations of related functions.


Assuntos
Epilepsia , Cardiomiopatia de Takotsubo , Ratos , Animais , Cardiomiopatia de Takotsubo/genética , Epilepsia/genética , Transdução de Sinais , Genes MHC da Classe II , Proteínas de Membrana/genética , Peptídeos e Proteínas de Sinalização Intercelular/genética
3.
Front Microbiol ; 11: 610077, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329502

RESUMO

The objectives of this study were to evaluate the inactivation efficacy of a 405-nm light-emitting diode (LED) against Cronobacter sakazakii biofilm formed on stainless steel and to determine the sensitivity change of illuminated biofilm to food industrial disinfectants. The results showed that LED illumination significantly reduced the population of viable biofilm cells, showing reduction of 2.0 log (25°C), 2.5 log (10°C), and 2.0 log (4°C) between the non-illuminated and LED-illuminated groups at 4 h. Images of confocal laser scanning microscopy and scanning electron microscopy revealed the architectural damage to the biofilm caused by LED illumination, which involved destruction of the stereoscopic conformation of the biofilm. Moreover, the loss of biofilm components (mainly polysaccharide and protein) was revealed by attenuated total reflection Fourier-transformed infrared spectroscopy, and the downregulation of genes involved in C. sakazakii biofilm formation was confirmed by real time quantitative PCR analysis, with greatest difference observed in fliD. In addition, the sensitivity of illuminated-biofilm cells to disinfectant treatment was found to significantly increased, showing the greatest sensitivity change with 1.5 log reduction between non-LED and LED treatment biofilms in the CHX-treated group. These results indicated that 405 nm LED illumination was effective at inactivating C. sakazakii biofilm adhering to stainless steel. Therefore, the present study suggests the potential of 405 nm LED technology in controlling C. sakazakii biofilms in food processing and storage, minimizing the risk of contamination.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA