Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ying Yong Sheng Tai Xue Bao ; 34(7): 1817-1824, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37694465

RESUMO

To screen environment-friendly seedling cultivation substrates which could replace peat and with less cost, we compared the effects of different agricultural and forestry residue mixed substrates on cutting propagation of Thuja sutchuenensis, in an experiment following randomized block design. There were five types of mixed substrates, including peat + vermiculite + perlite (T1), edible mushroom residue (EMR) + vermiculite + perlite (T2), carbo-nized rice husk (CRH) + vermiculite + perlite (T3), EMR + slag + sawdust (T4) and CRH + EMR + slag (T5). The results showed that the bulk density of T3 was the lowest, followed by T2, which significantly differed from other mixed substrates. The non-capillary porosity of T2 was significantly greater than that of T1, while the capillary porosity and the total porosity of T2 was lower than T1 and T3, respectively. T2 had the highest contents of total nitrogen, total phosphorus, total potassium, alkali-hydrolyzed nitrogen, available phosphorus, substrate moisture and the highest pH, which differed significantly from other mixed substrates in most chemical indicators. The membership function values of rooting rate and growth indicators of cuttings with different mixed substrates were in order of T2 > T3 > T1> T5 > T4. Most indicators with larger grey relation values were physical indicators. The top five indicators were capillary water capacity, total potassium, field water capacity, maximum water capacity, and total porosity, with both capillary water capacity and total potassium content ranking first. In general, the physicochemical properties, rooting rate, and growth characteristics of cuttings under T2 were better than those of other mixed substrates. The capillary water capacity and total potassium were the main factors affecting rooting and growth of cuttings. At the early stage of cutting, the physical properties of mixed substrate had greater effect on rooting rate and growth of cuttings than the chemical properties. Overall, our results suggested that T2 should be preferred in the cutting propagation of T. sutchuenensis.


Assuntos
Agaricales , Oryza , Thuja , Agricultura Florestal , Plântula , Solo , Carvão Vegetal , Nitrogênio , Fósforo , Potássio
2.
Ying Yong Sheng Tai Xue Bao ; 22(11): 2829-35, 2011 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-22303657

RESUMO

This paper studied the population density, morphological characteristics, and biomass and its allocation of Cynodon dactylon at different altitudinal sections of the hydro-fluctuation belt in Three Gorges Reservoir area, based on located observations. At the three altitudinal sections, the population density of C. dactylon was in the order of shallow water section (165-170 m elevation) > non-flooded section (above 172 m elevation) > deep water section (145-150 m elevation), the root diameter and root length were in the order of deep water section > shallow water section > non-flooded section, the total biomass, root biomass, stem biomass, leaf biomass, and stem biomass allocation ratio were in the order of the shallow water section > non-flooded section > deep water section, and the root biomass allocation ratio, leaf biomass allocation ratio, and underground biomass/aboveground biomass were in the order of deep water section > shallow water section > non-flooded section. The unique adaption strategies of C. dactylon to the flooding-drying habitat change in the shallow water section were the accelerated elongation growth and the increased stem biomass allocation, those in the deep water section were the increased node number of primary and secondary branches, increased number of the branches, and increased leaf biomass allocation, whereas the common strategies in the shallow and deep water sections were the accelerated root growth and the increased tillering and underground biomass allocation for preparing nutrition and energy for the rapid growth in terrestrial environment.


Assuntos
Biomassa , Cynodon/crescimento & desenvolvimento , Ecossistema , Movimentos da Água , Adaptação Fisiológica , China , Cynodon/fisiologia , Densidade Demográfica , Rios , Solo/análise , Abastecimento de Água
3.
Ying Yong Sheng Tai Xue Bao ; 20(9): 2057-62, 2009 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-20030122

RESUMO

Based on the investigation of the plants in Thuja sutchuenensis community, the life form spectra, leaf character, and hierarchical-synusia structure in the community were analyzed. The life form spectra of the plants in the community were 73.2% of phanemphyte, 18% of hemicryptophyte, 6% of geophyte, 2% of chamaephyte, and 0.8% of annual plants. The leaf quality was mainly of papery and conaceous, which occupied 48. 8% and 36. 4% , respectively. The dominant leaf size was microphy (60.8%), dominant leaf margin was un-entire (56.8%), and dominant leaf form was simple (86%). The T. sutchuenensis community had three sub-layers, i.e., tree layer, shrub layer, and herb layer, with lesser interlayer plants. Each layer was respectively composed by phanemphyte evergreen coniferophyte, broadleaf and deciduous broad-leaf plants, nanophanerophyte evergreen and deciduous broad-leaf plants, as well as hemicryptophyte, geophyte, and annual plants.


Assuntos
Ecossistema , Folhas de Planta/anatomia & histologia , Thuja/anatomia & histologia , China , Dinâmica Populacional , Thuja/classificação , Thuja/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...