Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473510

RESUMO

In order to address the irregularity of the welding path in aluminum alloy frame joints, this study conducted a numerical simulation of free-path welding. It focuses on the application of the TIG (tungsten inert gas) welding process in aluminum alloy welding, specifically at the intersecting line nodes of welded bicycle frames. The welding simulation was performed on a 6061-T6 aluminum alloy frame. Using a custom heat source subroutine written in Fortran language and integrated into the ABAQUS environment, a detailed numerical simulation study was conducted. The distribution of key fields during the welding process, such as temperature, equivalent stress, and post-weld deformation, were carefully analyzed. Building upon this analysis, the thin-walled TIG welding process was optimized using the response surface method, resulting in the identification of the best welding parameters: a welding current of 240 A, a welding voltage of 20 V, and a welding speed of 11 mm/s. These optimal parameters were successfully implemented in actual welding production, yielding excellent welding results in terms of forming quality. Through experimentation, it was confirmed that the welded parts were completely formed under the optimized process parameters and met the required product standards. Consequently, this research provides valuable theoretical and technical guidance for aluminum alloy bicycle frame welding.

2.
Materials (Basel) ; 15(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36143814

RESUMO

Low-carbon steel pipelines are frequently used as transport pipelines for various media. As the pipeline transport industry continues to develop in extreme directions, such as high efficiency, long life, and large pipe diameters, the issue of pipeline reliability is becoming increasingly prominent. This study selected Q235 steel, a typical material for low-carbon steel pipelines, as the research object. In accordance with the pipeline service environment and the accelerated corrosion environment test spectrum, cyclic salt spray accelerated corrosion tests that simulated the effects of the marine atmosphere were designed and implemented. Corrosion properties, such as corrosion weight loss, morphology, and product composition of samples with different cycles, were characterized through appearance inspection, scanning electron microscopy analysis, and energy spectrum analysis. The corrosion behavior and mechanism of Q235 low-carbon steel in the enhanced corrosion environment were studied, and the corrosion weight loss kinetics of Q235 steel was verified to conform to the power function law. During the corrosion process, the passivation film on the surface of the low-carbon steel and the dense and stable α-FeOOH layer formed after the passivation film was peeled off played a role in corrosion resistance. The passivation effect, service life, and service limit of Q235 steel were studied and determined, and an evaluation model for quick evaluation of the corrosion life of Q235 low-carbon steel was established. This work provides technical support to improve the life and reliability of low-carbon steel pipelines. It also offers a theoretical basis for further research on the similitude and relevance of cyclic salt spray accelerated corrosion testing.

3.
Materials (Basel) ; 13(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178352

RESUMO

Based on an 33Cr23Ni8Mn3N thermal simulation experiment, the application of an artificial neural network (ANN) in thermomechanical processing was studied. Based on the experimental data, a microstructure evolution model and constitutive equation of 33Cr23Ni8Mn3N heat-resistant steel were established. Stress, dynamic recrystallization (DRX) fraction, and DRX grain size were predicted. These models were evaluated by a variety of statistical indicators to determine that these models would work well if applied in predicting microstructure evolution and that they have high precision. Then, based on the weight of the ANN model, the sensitivity of the input parameters was analyzed to achieve an optimized ANN model. Based on the most widely used sensitivity analysis (SA) method (the Garson method), the input parameters were analyzed. The results show that the most important factor for the microstructure of 33Cr23Ni8Mn3N is the strain rate ( ε ˙ ). For the control of the microstructure, the control of the ε ˙ is preferred. ANN was applied to the development of processing map. The feasibility of the ANN processing map on austenitic heat-resistant steel was verified by experiments. The results show that the ANN processing map is basically consistent with processing map based on experimental data. The trained ANN model was implanted into finite element simulation software and tested. The test results show that the ANN model can accurately expand the data volume to achieve high precision simulation results.

4.
Materials (Basel) ; 12(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591698

RESUMO

The hot deformation behavior of 21-4N heat-resistant steel was studied by hot compression test in a deformation temperature range of 1000⁻1180 °C, a strain rate range of 0.01⁻10 s-1 and a deformation degree of 60%, and the stress-strain curves were obtained. The functional relationship between flow stress and process parameters (deformation degree, deformation temperature, strain rate, etc.) of 21-4N heat-resistant steel during hot deformation was explored, the constitutive equation of peak stress was established, and its accuracy was verified. Based on the dynamic material model, the energy dissipation maps and destabilization maps of 21-4N heat-resistant steel were established at strains of 0.2, 0.4 and 0.6, and processing maps were obtained by their superposition. Within the deformation temperature range of 1060~1120°C and a strain rate range of 0.01⁻0.1 s-1, there is a stable domain with the peak efficiency of about 0.5. The best hot working parameters (strain rate and deformation temperature) of 21-4N heat-resistant steel are determined by the stable and instable domain in the processing maps, which are in the deformation temperature range of 1120⁻1180 °C and the strain rate range of 0.01⁻10 s-1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...