Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Enzymol ; 688: 1-42, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37748823

RESUMO

A long-standing goal in X-ray crystallography has been to extract information about the collective motions of proteins from diffuse scattering: the weak, textured signal that is found in the background of diffraction images. In the past few years, the field of macromolecular diffuse scattering has seen dramatic progress, and many of the past challenges in measurement and interpretation are now considered tractable. However, the concept of diffuse scattering is still new to many researchers, and a general set of procedures needed to collect a high-quality dataset has never been described in detail. Here, we provide the first guidelines for performing diffuse scattering experiments, which can be performed at any macromolecular crystallography beamline that supports room-temperature studies with a direct detector. We begin with a brief introduction to the theory of diffuse scattering and then walk the reader through the decision-making processes involved in preparing for and conducting a successful diffuse scattering experiment. Finally, we define quality metrics and describe ways to assess data quality both at the beamline and at home. Data obtained in this way can be processed independently by crystallographic software and diffuse scattering software to produce both a crystal structure, which represents the average atomic coordinates, and a three-dimensional diffuse scattering map that can then be interpreted in terms of models for protein motions.


Assuntos
Software , Síncrotrons , Coleta de Dados , Cristalografia por Raios X , Movimento (Física)
2.
Curr Opin Chem Biol ; 72: 102232, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36462455

RESUMO

Enzyme function requires conformational changes to achieve substrate binding, domain rearrangements, and interactions with partner proteins, but these movements are difficult to observe. Small-angle X-ray scattering (SAXS) is a versatile structural technique that can probe such conformational changes under solution conditions that are physiologically relevant. Although it is generally considered a low-resolution structural technique, when used to study conformational changes as a function of time, ligand binding, or protein interactions, SAXS can provide rich insight into enzyme behavior, including subtle domain movements. In this perspective, we highlight recent uses of SAXS to probe structural enzyme changes upon ligand and partner-protein binding and discuss tools for signal deconvolution of complex protein solutions.


Assuntos
Proteínas , Difração de Raios X , Espalhamento a Baixo Ângulo , Raios X , Ligantes , Proteínas/química
3.
J Am Chem Soc ; 144(30): 13446-13450, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35700972

RESUMO

We report the theoretical and experimental investigation of two polyoxometalate-based metal-organic frameworks (MOFs), [(MnMo6)2(TFPM)]imine and [(AlMo6)2(TFPM)]imine, as quasi-solid-state electrolytes. Classical molecular dynamics coupled with quantum chemistry and grand canonical Monte Carlo are utilized to model the corresponding diffusion and ionic conduction in the two materials. Using different approximate levels of ion diffusion behavior, the primary ionic conduction mechanism was identified as solvent-assisted hopping (>77%). Detailed static and dynamic solvation structures were obtained to interpret Li+ motion with high spatial and temporal resolution. A rationally designed noninterpenetrating MOF-688(one-fold) material is proposed to achieve 6-8 times better performance (1.6-1.7 mS cm-1) than the current state-of-the-art (0.19-0.35 mS cm-1).

4.
J Am Chem Soc ; 144(25): 11413-11424, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35699585

RESUMO

The results of quantum chemical and molecular dynamics calculations reveal that polyanionic gallium-based cages accelerate cyclization reactions of pentadienyl alcohols as a result of substrate cage interactions, preferential binding of reactive conformations of substrate/H3O+ pairs, and increased substrate basicity. However, the increase in basicity dominates. Experimental structure-activity relationship studies in which the metal vertices and overall charge of the cage are varied confirm the model derived via calculations.


Assuntos
Biomimética , Simulação de Dinâmica Molecular , Aceleração , Ciclização , Conformação Molecular
5.
Acc Chem Res ; 55(5): 707-721, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35170938

RESUMO

The design and synthesis of permanently porous materials with extended cage structures is a long-standing challenge in chemistry. In this Account, we highlight the unique role of zeolitic imidazolate frameworks (ZIFs), a class of framework materials built from tetrahedral nodes connected through imidazolate linkers, in meeting this challenge and illustrate specific features that set ZIFs apart from other porous materials. The structures of ZIFs are characteristic of a variety of large, zeolite-like cages that are covalently connected with neighboring cages and fused in three-dimensional space. In contrast to molecular cages, the fusion of cages results in extraordinary architectural and chemical stability for the passage of gases and molecules through cages and for carrying out chemical reactions within these cages while keeping the cages intact. The combination of the advantages from both cage chemistry and extended structures allows uniquely interconnected yet compartmentalized void spaces inside ZIF solids, rendering their wide range of applications in catalysis, gas storage, and gas separation.While the field of ZIFs has seen rapid development over the past decade, with hundreds of ZIF structures built from dozens of different cages of varying composition, size, and shapes reported, rational approaches to their design are largely unknown. In this Account, we summarize a vast number of cages formed in reported ZIFs and then review how the thermodynamic factors and traditional guest-templating strategies from zeolites influence the formation of cages. We highlight how the link-link interactions perform in the ZIF formation mechanism and serve as a means to target the formation of frameworks containing cages of specific sizes with structures exhibiting a level of complexity as yet unachieved in discrete coordination cages. For example, the giant ucb cage features a dimension of 46 Å and the complex moz cage is constructed from as many as 660 components.With the finding of these large and complex cages in ZIFs, we envision that the collection of cage structures will further be diversified by a mixed-linker approach utilizing a more complex combination of link-link interactions or by creating multivariant (MTV) systems that have been realized in other framework materials yet not widely employed in ZIFs. The more complicated cage structures can provide extra variations in chemical environments, and in addition to that, MTV systems can generate inhomogeneity inside each type of cage structure. The fused cages at such complexity that are difficult to be realized in solution environments will potentially enable more complex materials for smart applications.


Assuntos
Zeolitas , Catálise , Gases , Imidazóis/química , Porosidade , Zeolitas/química
6.
J Am Chem Soc ; 144(4): 1539-1544, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35068156

RESUMO

Two entangled 2D square covalent organic frameworks (COFs) have been synthesized from 4,4',4″,4‴-(9,9'-spirobi[fluorene]-2,2',7,7'-tetrayl)-tetrabenzaldehhyde (SFTB) and p-phenylenediamine (PPA) and benzidine (BZD) to form COF-38, [(SFTB)(PPA)2]imine, and its isoreticular form COF-39, [(SFTB)(BZD)2]imine. We also report the single-crystal electron diffraction structure of COF-39 and find that it is composed of mutually entangled 2D square nets (sql). These COFs represent the first examples of entangled 2D COF structures, which, as we illustrate, were made possible by our strategy of using the distorted tetrahedral SFTB building unit. SFTB overcomes the propensity of 2D COFs to stack through π-π stacking and allows entanglements to form. This work significantly adds to the design principles of COFs.

7.
J Am Chem Soc ; 144(5): 2387-2396, 2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35080872

RESUMO

Metal-organic framework-808 has been functionalized with 11 amino acids (AA) to produce a series of MOF-808-AA structures. The adsorption of CO2 under flue gas conditions revealed that glycine- and dl-lysine-functionalized MOF-808 (MOF-808-Gly and -dl-Lys) have the highest uptake capacities. Enhanced CO2 capture performance in the presence of water was observed and studied by using single-component sorption isotherms, CO2/H2O binary isotherm, and dynamic breakthrough measurements. The key to the favorable performance was uncovered by deciphering the mechanism of CO2 capture in the pores and attributed to the formation of bicarbonate as evidenced by 13C and 15N solid-state nuclear magnetic resonance spectroscopy studies. On the basis of these results, we examined the performance of MOF-808-Gly in simulated coal flue gas conditions and found that it is possible to capture and release CO2 by vacuum swing adsorption. MOF-808-Gly was cycled at least 80 times with full retention of performance. This study significantly advances our understanding of CO2 chemistry in MOFs by revealing how strongly bound amine moieties to the MOF backbone create the chemistry and environment within the pores, leading to the binding and release of CO2 under mild conditions without application of heat.


Assuntos
Aminoácidos/química , Dióxido de Carbono/química , Gases/química , Compostos Organometálicos/química , Umidade , Incineração , Modelos Moleculares , Estrutura Molecular
8.
Science ; 374(6566): 454-459, 2021 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-34672755

RESUMO

Although the positions of water guests in porous crystals can be identified, determination of their filling sequence remains challenging. We deciphered the water-filling mechanism for the state-of-the-art water-harvesting metal-organic framework MOF-303 by performing an extensive series of single-crystal x-ray diffraction measurements and density functional theory calculations. The first water molecules strongly bind to the polar organic linkers; they are followed by additional water molecules forming isolated clusters, then chains of clusters, and finally a water network. This evolution of water structures led us to modify the pores by the multivariate approach, thereby precisely modulating the binding strength of the first water molecules and deliberately shaping the water uptake behavior. This resulted in higher water productivity, as well as tunability of regeneration temperature and enthalpy, without compromising capacity and stability.

9.
Chem ; 6(1): 142-152, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-32285019

RESUMO

Unimolecular decomposition pathways are challenging to address in transition-metal catalysis and have previously not been suppressed via incorporation into a solid support. Two robust metal-organic frameworks (IRMOF-10 and bio-MOF-100) are used for the architectural stabilization of a structurally well-defined gold(III) catalyst. The inherent rigidity of these materials is utilized to preclude a unimolecular decomposition pathway - reductive elimination. Through this architectural stabilization strategy, decomposition of the incorporated gold(III) catalyst in the metal-organic frameworks is not observed; in contrast, the homogeneous analogue is prone to decomposition in solution. Stabilization of the catalyst in these metal-organic frameworks precludes leaching and enables recyclability, which is crucial for productive heterogeneous catalysis.

10.
J Am Chem Soc ; 141(47): 18862-18869, 2019 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-31674781

RESUMO

Coordinative alignment of target small molecules onto a chiral metal-organic framework (MOF-520)provides a powerful method to determine the structures of small molecules through single-crystal X-ray diffraction (SXRD). In this work, the structures of 17 molecules with eight new coordinating functionalities and varying size have been determined by this method, four of which are complex molecules being crystallized for the first time. The chirality of the MOF backbone not only enables enantioselective crystallization of chiral small molecules from a racemic mixture but also imposes diastereoselective incorporation upon achiral molecules. Crystallographic studies assisted by density functional theory (DFT) calculations indicate that the stereoselectivity of MOF-520 not exclusively comes from the steric confinement of the chiral pore environment but also from asymmetric chemical bonding of the target molecules with the framework that is able to provide sufficient energy difference between possible coordination configurations.


Assuntos
Estruturas Metalorgânicas/química , Nitrogênio/química , Fósforo/química , Enxofre/química , Cristalografia por Raios X , Modelos Moleculares , Conformação Molecular , Estereoisomerismo
11.
J Am Chem Soc ; 141(43): 17081-17085, 2019 10 30.
Artigo em Inglês | MEDLINE | ID: mdl-31613614

RESUMO

The synthesis of a new anionic 3D metal-catecholate framework, termed MOF-1992, is achieved by linking tetratopic cobalt phthalocyanin-2,3,9,10,16,17,23,24-octaol linkers with Fe3(-C2O2-)6(OH2)2 trimers into an extended framework of roc topology. MOF-1992 exhibits sterically accessible Co active sites together with charge transfer properties. Cathodes based on MOF-1992 and carbon black (CB) display a high coverage of electroactive sites (270 nmol cm-2) and a high current density (-16.5 mA cm-2; overpotential, -0.52 V) for the CO2 to CO reduction reaction in water (faradaic efficiency, 80%). Over the 6 h experiment, MOF-1992/CB cathodes reach turnover numbers of 5800 with turnover frequencies of 0.20 s-1 per active site.

12.
J Am Chem Soc ; 141(44): 17522-17526, 2019 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-31642665

RESUMO

A new three-dimensional metal-organic framework (MOF) was synthesized by linking ditopic amino functionalized polyoxometalate [N(C4H9)4]3[MnMo6O18{(OCH2)3CNH2}2] with 4-connected tetrahedral tetrakis(4-formylphenyl)methane building units through imine condensation. The structure of this MOF, termed MOF-688, was solved by single crystal X-ray diffraction and found to be triply interpenetrated diamond-based dia topology. Tetrabutylammonium cations fill the pores and balance the charge of the anionic framework. They can be exchanged with lithium ions to give high ionic conductivity (3.4 × 10-4 S cm-1 at 20 °C), a high lithium ion transference number (tLi+ = 0.87), and low interfacial resistance (353 Ω) against metallic lithium-properties that make it ideally suited as a solid-state electrolyte. Indeed, a prototype lithium metal battery constructed using MOF-688 as the solid electrolyte can be cycled at room temperature with a practical current density of ∼0.2 C.

13.
J Am Chem Soc ; 141(28): 11253-11258, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31265259

RESUMO

Herein, we demonstrate the first example of a multistep solid-state organic synthesis, in which a new imine-linked two-dimensional covalent organic framework (COF-170, 1) was transformed through three consecutive postsynthetic modifications into porous, crystalline cyclic carbamate and thiocarbamate-linked frameworks. These linkages are previously unreported and inaccessible through de novo synthesis. While not altering the overall connectivity of the framework, these chemical transformations induce significant conformational and structural changes at each step, highlighting the key importance of noncovalent interactions and conformational flexibility to COF crystallinity and porosity. These transformations were assessed using 15N multiCP-MAS NMR spectroscopy, providing the first quantitation of yields in COF postsynthetic modification reactions, as well as of amine defect sites in imine-linked COFs. This multistep COF linkage postsynthetic modification represents a significant step toward bringing the precision of organic solution-phase synthesis to extended solid-state compounds.


Assuntos
Carbamatos/química , Iminas/química , Estrutura Molecular , Porosidade , Propriedades de Superfície
14.
J Am Chem Soc ; 141(13): 5201-5210, 2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30852893

RESUMO

Single-atom catalysts are often considered as the ultimate design principle for supported catalysts, due to their unique geometric and electronic properties and their highly efficient use of precious materials. Here, we report a single-atom catalyst, Cu/UiO-66, prepared by a covalent attachment of Cu atoms to the defect sites at the zirconium oxide clusters of the metal-organic framework (MOF) UiO-66. Kinetic measurements show this catalyst to be highly active and stable under realistic reaction conditions for two important test reactions, the oxidation of CO at temperatures up to 350 °C, which makes this interesting for application in catalytic converters for cars, and for CO removal via selective oxidation of CO in H2-rich feed gases, where it shows an excellent selectivity of about 100% for CO oxidation. Time-resolved operando spectroscopy measurements indicate that the activity of the catalyst is associated with atomically dispersed, positively charged ionic Cu species. Density functional theory (DFT) calculations in combination with experimental data show that Cu binds to the MOF by -OH/-OH2 ligands capping the defect sites at the Zr oxide clusters.

15.
Adv Mater ; 31(12): e1807553, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30687983

RESUMO

Nanocasting based on porous templates is a powerful strategy in accessing materials and structures that are difficult to form by bottom-up syntheses in a controlled fashion. A facile synthetic strategy for casting ordered, nanoporous platinum (NP-Pt) networks with a high degree of control by using metal-organic frameworks (MOFs) as templates is reported here. The Pt precursor is first infiltrated into zirconium-based MOFs and subsequently transformed to 3D metallic networks via a chemical reduction process. It is demonstrated that the dimensions and topologies of the cast NP-Pt networks can be accurately controlled by using different MOFs as templates. The Brunauer-Emmett-Teller surface areas of the NP-Pt networks are estimated to be >100 m2 g-1 and they exhibit excellent catalytic activities in the methanol electrooxidation reaction (MEOR). This new methodology presents an attractive route to prepare well-defined nanoporous materials for diverse applications ranging from energy to sensing and biotechnology.

16.
J Am Chem Soc ; 140(51): 18208-18216, 2018 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-30525562

RESUMO

Particulate methane monooxygenase (pMMO) is an enzyme that oxidizes methane to methanol with high activity and selectivity. Limited success has been achieved in incorporating biologically relevant ligands for the formation of such active site in a synthetic system. Here, we report the design and synthesis of metal-organic framework (MOF) catalysts inspired by pMMO for selective methane oxidation to methanol. By judicious selection of a framework with appropriate topology and chemical functionality, MOF-808 was used to postsynthetically install ligands bearing imidazole units for subsequent metalation with Cu(I) in the presence of dioxygen. The catalysts show high selectivity for methane oxidation to methanol under isothermal conditions at 150 °C. Combined spectroscopies and density functional theory calculations suggest bis(µ-oxo) dicopper species as probable active site of the catalysts.


Assuntos
Materiais Biomiméticos/química , Estruturas Metalorgânicas/química , Metano/química , Metanol/síntese química , Catálise , Cobre/química , Teoria da Densidade Funcional , Modelos Químicos , Estrutura Molecular , Oxirredução , Oxigênio/química , Oxigenases/química
17.
J Am Chem Soc ; 140(48): 16438-16441, 2018 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-30431266

RESUMO

2D covalent organic frameworks (COFs) with flexible urea linkages have been synthesized by condensation of 1,3,5-triformylphloroglucinol (TFP) with 1,4-phenylenediurea (BDU) or 1,1'-(3,3'-dimethyl-[1,1'-biphenyl]-4,4'-diyl)diurea (DMBDU). The resulting COF-117 and COF-118 undergo reversible structural dynamics within their layers, in response to inclusion and removal of guest molecules, emanating from urea C-N bond rotation and interlayer hydrogen-bonding interactions. These compounds are the first urea-linked COFs, serving to expand the scope of reticular chemistry.

18.
J Am Chem Soc ; 140(42): 13618-13622, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30299951

RESUMO

Controlling the spatial arrangement of molecular catalysts on electrodes is critical to developing an optimal electrocatalyst. Mo-S clusters have shown great promise in catalyzing hydrogen evolution for the generation of carbon-free fuel from water. Here we report a synthetic approach to organize these molecular clusters into ordered dimers, cages, and chains through the use of organic linkers, as solved by single-crystal X-ray diffraction. We find that the linkage through the coordination bond between thiolate and Mo3S7 leads to (1) a 40-fold enhancement in turnover frequency compared with the unlinked cluster and (2) the periodic arrangement of clusters on the electrode with control over their distance, orientation, and density, thus enabling hydrogen evolution at high catalyst loading. The materials developed here require an overpotential of only 89 mV to achieve a current density of 10 mA cm-2, outperforming other Mo-S catalysts (both molecular and solid-state).

19.
J Am Chem Soc ; 140(40): 12715-12719, 2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30247881

RESUMO

Triangular 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) and linear tetrafluorophthalonitrile (TFPN) or 2,3,5,6-tetrafluoro-4-pyridinecarbonitrile (TFPC) were linked by 1,4-dioxin linkages to form crystalline 2D covalent organic frameworks, termed COF-316 and -318. Unlike the condensation reactions commonly used to crystallize the great majority of COFs, the reactions used in this report are based on nucleophilic aromatic substitution reactions (SNAr) that are considered irreversible. Our studies show that the reactivity of TFPN and TFPC with HHTP is enhanced by the nitrile substituents leading to facile reactions of planar building units to yield the present 1,4-dioxin linked COFs. Because these reactions are irreversible, the resultant frameworks have high chemical stability in both acid and base. This has led to postsynthetic modifications of COF-316 by reactions necessitating extreme conditions to covalently install functionalities not otherwise accessible. We also report the permanent porosity of these COFs.

20.
J Am Chem Soc ; 138(34): 10810-3, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27511140

RESUMO

The applications of metal-organic frameworks (MOFs) toward industrial separation, catalysis, sensing, and some sophisticated devices are drastically affected by their intrinsic fragility and poor processability. Unlike organic polymers, MOF crystals are insoluble in any solvents and are usually not thermoplastic, which means traditional solvent- or melting-based processing techniques are not applicable for MOFs. Herein, a continuous phase transformation processing strategy is proposed for fabricating and shaping MOFs into processable fluids, shaped bodies, and even MOF foams that are capable of reversible transformation among these states. Based on this strategy, a cup-shaped Cu-MOF composite and hierarchically porous MOF foam were developed for highly efficient catalytic C-H oxidation (conv. 76% and sele. 93% for cup-shaped Cu-MOF composite and conv. 92% and sele. 97% for porous foam) with ease of recycling and dramatically improved kinetics. Furthermore, various MOF-based foams with low densities (<0.1 g cm(-3)) and high MOF loadings (up to 80 wt %) were obtained via this protocol. Imparted with hierarchically porous structures and fully accessible MOFs uniformly distributed, these foams presented low energy penalty (pressure drop <20 Pa, at 500 mL min(-1)) and showed potential applications as efficient membrane reactors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...