Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 463, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323147

RESUMO

When comets interacting with solar wind, straight and narrow plasma tails will be often formed. The most remarkable phenomenon of the plasma tails is the disconnection event, in which a plasma tail is uprooted from the comet's head and moves away from the comet. In this paper, the interaction process between a comet and solar wind is simulated by using a laser-driven plasma cloud to hit a cylinder obstacle. A disconnected plasma tail is observed behind the obstacle by optical shadowgraphy and interferometry. Our particle-in-cell simulations show that the difference in thermal velocity between ions and electrons induces an electrostatic field behind the obstacle. This field can lead to the convergence of ions to the central region, resulting in a disconnected plasma tail. This electrostatic-field-induced model may be a possible explanation for the disconnection events of cometary tails.

2.
Sci Rep ; 7: 42915, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28266497

RESUMO

A pair of collisionless shocks that propagate in the opposite directions are firstly observed in the interactions of laser-produced counter-streaming flows. The flows are generated by irradiating a pair of opposing copper foils with eight laser beams at the Shenguang-II (SG-II) laser facility. The experimental results indicate that the excited shocks are collisionless and electrostatic, in good agreement with the theoretical model of electrostatic shock. The particle-in-cell (PIC) simulations verify that a strong electrostatic field growing from the interaction region contributes to the shocks formation. The evolution is driven by the thermal pressure gradient between the upstream and the downstream. Theoretical analysis indicates that the strength of the shocks is enhanced with the decreasing density ratio during both flows interpenetration. The positive feedback can offset the shock decay process. This is probable the main reason why the electrostatic shocks can keep stable for a longer time in our experiment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA