Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Evol Appl ; 15(3): 471-483, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35386402

RESUMO

On the coexistence of genetically modified (GM) and non-GM maize, the isolation distance plays an important role in controlling the transgenic flow. In this study, maize gene flow model was used to quantify the MTD0.1% and MTD1% in the main maize-planting regions of China; those were the maximum threshold distance for the gene flow frequency equal to or lower than 1% and 0.1%. The model showed that the extreme MTD1% and MTD0.1% were 187 and 548 m, respectively. The regions of northern China and the coastal plain, including Hainan crop winter-season multiplication base, showed a significantly high risk for maize gene flow, while the west-south of China was the largest low-risk areas. Except for a few sites, the isolation distance of 500 m could yield a seed purity of better than 0.1% and meet the production needs of breeder seeds. The parameters of genetic competitiveness (cp) were introduced to assess the effects of hybrid compatibility between the donor and recipient. The results showed that hybrid incompatibility could minimize the risk. When cp = 0.05, MTD1% and MTD0.1% could be greatly reduced within 19 m and 75 m. These data were helpful to provide scientific data to set the isolation distance between GM and non-GM maize and select the right place to produce the hybrid maize seeds.

2.
PLoS One ; 12(1): e0170330, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28107426

RESUMO

BACKGROUND: Drought is the most important factor that limits rice production in drought-prone environments. Plant microRNAs (miRNAs) are involved in biotic and abiotic stress responses. Common wild rice (Oryza rufipogon Griff.) contains abundant drought-resistant genes, which provide an opportunity to explore these excellent resources as contributors to improve rice resistance, productivity, and quality. RESULTS: In this study, we constructed four small RNA libraries, called CL and CR from PEG6000-free samples and DL and DR from PEG6000-treated samples, where 'R' indicates the root tissue and 'L' indicates the shoot tissue. A total of 200 miRNAs were identified to be differentially expressed under the drought-treated conditions (16% PEG6000 for 24 h), and the changes in the miRNA expression profile of the shoot were distinct from those of the root. At the miRNA level, 77 known miRNAs, which belong to 23 families, including 40 up-regulated and 37 down-regulated in the shoot, and 85 known miRNAs in 46 families, including 65 up-regulated and 20 down-regulated in the root, were identified as differentially expressed. In addition, we predicted 26 new miRNA candidates from the shoot and 43 from the root that were differentially expressed during the drought stress. The quantitative real-time PCR analysis results were consistent with high-throughput sequencing data. Moreover, 88 miRNAs that were differentially-expressed were predicted to match with 197 targets for drought-stress. CONCLUSION: Our results suggest that the miRNAs of O. rufipogon are responsive to drought stress. The differentially expressed miRNAs that are tissue-specific under drought conditions could play different roles in the regulation of the auxin pathway, the flowering pathway, the drought pathway, and lateral root formation. Thus, the present study provides an account of tissue-specific miRNAs that are involved in the drought adaption of O. rufipogon.


Assuntos
Secas , MicroRNAs/genética , Oryza/fisiologia , Raízes de Plantas/fisiologia , Brotos de Planta/fisiologia , China , Perfilação da Expressão Gênica , Oryza/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
3.
PLoS One ; 10(7): e0131455, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26134138

RESUMO

BACKGROUND: The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. RESULTS: In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. CONCLUSION: This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Oryza/genética , Estresse Fisiológico/genética , Transcriptoma , Adaptação Fisiológica/genética , Bases de Dados Genéticas , Secas , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Especificidade de Órgãos , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
4.
BMC Genomics ; 15: 1111, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25511667

RESUMO

BACKGROUND: Haloxylon ammodendron (C. A. Mey.) is widely distributed across a range of habitats, including gravel desert, clay desert, fixed and semi-fixed sand, and saline land in Asian and African deserts. To date, no genomic information or expressed sequence tag-simple sequence repeat (EST-SSR) marker has been reported for H. ammodendron plants. RESULTS: Using Illumina sequencing technology, we generated over two billion bases of high-quality sequence data on H. ammodendron and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 79,918 unigenes (mean length = 728 bp). Based on similarity searches comparing these unigenes with known proteins in the non-redundant (nr) protein database, 25,619 unigenes were functionally annotated with a cut-off E-value of 10-5. In addition, DGE reads were mapped to the assembled transcriptome for gene expression analysis under drought stress. In total, 1,060 differentially expressed genes were identified. Among these genes, 356 genes were upregulated after drought treatment, and 704 genes were downregulated. We used the KEGG database to annotate these drought-induced genes; 207 unigenes were identified in the KEGG pathway annotation, and approximately 12.1% of the unigenes with known function fell into categories related to fatty acid metabolism, starch and sucrose metabolism, and nitrogen metabolism, suggesting that these pathways or processes may be involved in the drought response. Together, a total of 35 drought-inducible transcription factors were identified, including WRKY, MYB and bZIP family members. CONCLUSIONS: Our study is the first to provide a transcriptome sequence resource for H. ammodendron plants and to determine its digital gene expression profile under drought conditions using the assembled transcriptome data for reference. These data provide a valuable resource for genetic and genomic studies of desert plants under abiotic conditions.


Assuntos
Fabaceae/genética , Genes de Plantas , Secas , Etiquetas de Sequências Expressas , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Repetições de Microssatélites/genética , Anotação de Sequência Molecular , RNA/química , RNA/isolamento & purificação , RNA/metabolismo , Análise de Sequência de DNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...