Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2309170, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952062

RESUMO

The long-term durability of triboelectric nanogenerators (TENGs) remains a main challenge for practical applications because of inevitable material abrasion and wear, especially for sliding TENGs. Herein, an inorganic triboelectric pair composed of diamond-like carbon (DLC) and glass with excellent durability and triboelectric output for sliding-mode TENGs is proposed. This triboelectric pair possesses a low coefficient of friction and little abrasion and accordingly excellent durability (>500 000 cycles). Moreover, compared with the traditional copper-polytetrafluoroethylene (Cu-PTFE) TENG with maximum transferred charges of 50 nC, those of the DLC-glass TENG reaches 141 nC. Due to the low-friction and high hardness of the triboelectric pair, the output quickly recovers after simply cleaning wear debris. The DLC-glass TENG demonstrates an output power density of 530 mW m-2 and a fourfold faster capacitor charging speed than the Cu-PTFE TENG. Compared to the reported durable TENGs via structure optimization and interface lubrication, the DLC-glass TENG shows higher outputs and simpler structure. This DLC-glass pair structure is also introduced into a spherical TENG for blue energy harvesting with excellent durability. The inorganic triboelectric pair with excellent mechanical durability and electrical performance proposed in this work shows huge prospects for practical applications of TENGs.

2.
J Colloid Interface Sci ; 674: 959-971, 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38959741

RESUMO

Despite the bright fortune of lithium-sulfur (Li-S) batteries as one of the next-generation energy storage systems owing to the ultrahigh theoretical energy density and earth-abundance of sulfur, crucial challenges including polysulfide shuttling and low sulfur content of sulfur cathodes need to be overcome before the commercial survival of sulfur cathodes. Herein, cobalt/carbon spheres embedded CNTs (Co-C-CNTs) are rationally designed as multifunctional hosts to synergistically address the drawbacks of sulfur cathodes. The host is synthesized by a facile pyrolysis using Co(OH)2 template and followed with the controllable etching process. The hierarchical porous structure owning high pore volume and surface area can buffer the volume change, physically confine polysulfides, and provide conductive networks. Besides, partially remained metallic cobalt nanoparticles are favorable for chemical adsorption and conversion of polysulfides, as validated by density functional theory simulations. With the combination of above merits, the S@Co-C-CNTs cathodes with a high sulfur content of 80 wt% present a superior initial capacity (1568 mAh g-1 at 0.1C) with ultrahigh 93.6% active material utilization, and excellent rate performance (649 mAh g-1 at 2C), providing feasible strategies for the optimization of cathodes in metal-sulfur batteries.

3.
J Colloid Interface Sci ; 665: 286-298, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38531274

RESUMO

Tailoring porous host materials, as an effective strategy for storing sulfur and restraining the shuttling of soluble polysulfides in electrolyte, is crucial in the design of high-performance lithium-sulfur (Li-S) batteries. However, for the widely studied conductive hosts such as mesoporous carbon, how the aspect ratio affects the confining ability to polysulfides, ion diffusion as well as the performances of Li-S batteries has been rarely studied. Herein, ordered mesoporous carbon (OMC) is chosen as a proof-of-concept prototype of sulfur host, and its aspect ratio is tuned from over âˆ¼ 2 down to below âˆ¼ 1.2 by using ordered mesoporous silica hard templates with variable length/width scales. The correlation between the aspect ratio of OMCs and the electrochemical performances of the corresponding sulfur-carbon cathodes are systematically studied with combined electrochemical measurements and microscopic characterizations. Moreover, the evolution of sulfur species in OMCs at different discharge states is scrutinized by small-angle X-ray scattering. This study gives insight into the aspect ratio effects of mesoporous host on battery performances of sulfur cathodes, providing guidelines for designing porous host materials for high-energy sulfur cathodes.

4.
ACS Appl Mater Interfaces ; 15(18): 22351-22366, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37098157

RESUMO

Flexible piezocapacitive sensors utilizing nanomaterial-polymer composite-based nanofibrous membranes offer an attractive alternative to more traditional piezoelectric and piezoresistive wearable sensors owing to their ultralow powered nature, fast response, low hysteresis, and insensitivity to temperature change. In this work, we propose a facile method of fabricating electrospun graphene-dispersed PVAc nanofibrous membrane-based piezocapacitive sensors for applications in IoT-enabled wearables and human physiological function monitoring. A series of electrical and material characterization experiments were conducted on both the pristine and graphene-dispersed PVAc nanofibers to understand the effect of graphene addition on nanofiber morphology, dielectric response, and pressure sensing performance. Dynamic uniaxial pressure sensing performance evaluation tests were conducted on the pristine and graphene-loaded PVAc nanofibrous membrane-based sensors for understanding the effect of two-dimensional (2D) nanofiller addition on pressure sensing performance. A marked increase in the dielectric constant and pressure sensing performance was observed for graphene-loaded spin coated membrane and nanofiber webs respectively, and subsequently the micro dipole formation model was invoked to explain the nanofiller-induced dielectric constant enhancement. The robustness and reliability of the sensor have been underscored by conducting accelerated lifetime assessment experiments entailing at least 3000 cycles of periodic tactile force loading. A series of tests involving human physiological parameter monitoring were conducted to underscore the applicability of the proposed sensor for IoT-enabled personalized health care, soft robotics, and next-generation prosthetic devices. Finally, the easy degradability of the sensing elements is demonstrated to emphasize their suitability for transient electronics applications.

5.
ACS Appl Mater Interfaces ; 15(3): 4398-4407, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36514844

RESUMO

Elastomer-based wearables can improve people's lives; however, frictional wear caused by manipulation may pose significant concerns regarding their durability and sustainability. To address the aforementioned issue, a new class of advanced scalable supersoft elastic transparent material (ASSETm) is reported, which offers a unique combination of scalability (20 g scale), stretchability (up to 235%), and enzymatic degradability (up to 65% in 30 days). The key feature of our design is to render native dextrin hydrophobic, which turns it into a macroinitiator for bulk ring-opening polymerization. Based on ASSETm, a self-powered touch sensor (ASSETm-TS) for touch sensing and non-contact approaching detection, possessing excellent electrical potential (up to 65 V) and rapid response time (60 ms), is fabricated. This work is a step toward developing sustainable soft electronic systems, and ASSETm's tunability enables further improvement of electrical outputs, enhancing human-interactive applications.

6.
ACS Appl Mater Interfaces ; 14(45): 51018-51028, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36322176

RESUMO

Wind energy harvesting and sensing have a huge prospect in constructing self-powered sensor nodes, but the energy transducing efficiency at low and ultra-low wind speeds is still limited. Herein, we proposed a Kármán vortex street driven membrane triboelectric nanogenerator (KVSM-TENG) for ultra-low speed wind energy harvesting and flow sensing. By introducing Kármán vortex in the KVSM-TENG, the cut-in wind speed of the KVSM-TENG decreased from 1 to 0.52 m/s that is the lowest cut-in wind speed in current TENGs. The instantaneous output density of the KVSM-TENG significantly increased by 1000 times and 2.65 times at the inlet wind speeds of 1 and 2 m/s, respectively. In addition, with the excellent energy transducing performance at the ultra-low speed range, the KVSM-TENG was successfully demonstrated to detect a weak leakage of gas pipeline (∼0.6 m/s) for alarming with high sensitivity. The interaction mechanism between the vortex and KVSM-TENG was systematically investigated. Through the simulation and experimental validation, the enhancement mechanism of vortex dependence on the cylinder diameter and placement location of KVSM-TENG was investigated in detail. The influence of parameters such as membrane length, width, thickness, and electrode gap on the performance of the KVSM-TENG was systematically studied. This work not only provided an ingenious strategy for ultra-low speed wind energy harvesting but also demonstrates the promising prospects for monitoring the air flow in the natural gas exploitation and transportation.

7.
ACS Appl Mater Interfaces ; 13(24): 28843-28854, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34101421

RESUMO

This study reports on the ultralubricity of a high-temperature resilient nanocomposite WS2/a-C tribocoating. The coefficient of friction of this coating remains at around 0.02 independently of a thermal treatment up to ∼500 °C, as confirmed by high-temperature tribotests. Moreover, the coating annealed at 450 °C keeps exhibiting a similar ultralubricity when cooled back down to room temperature and tested there, implying a tribological self-adaptation over a broad temperature range. High-resolution TEM observations of the tribofilms on the wear track unveil that WS2 nanoplatelets form dynamically via atomic rearrangement and extend via unfaulting geometrical defects (bound by partial climb dislocations). The (002) basal planes of the WS2 nanoplatelets, reoriented parallel to the tribo-sliding direction, contribute to a sustainable ultralubricity. The declining triboperformance beyond 500 °C is associated with sulfur loss rather than the transformation of WS2 into inferior WO3 via oxidation as suggested earlier. This self-adaptive WS2/a-C tribocoating holds promise for a constant ultralubrication with excellent thermal performance.

8.
ACS Appl Mater Interfaces ; 13(1): 1094-1104, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33395251

RESUMO

Recent advances in 3D printing technology have enabled unprecedented design freedom across an ever-expanding portfolio of materials. However, direct 3D printing of soft polymeric materials such as polydimethylsiloxane (PDMS) is challenging, especially for structural complexities such as high-aspect ratio (>20) structures, 3D microfluidic channels (∼150 µm diameter), and biomimetic microstructures. This work presents a novel processing method entailing 3D printing of a thin-walled sacrificial metallic mold, soft polymer casting, and acidic etching of the mold. The proposed workflow enables the facile fabrication of various complex, bioinspired PDMS structures (e.g., 3D double helical microfluidic channels embedded inside high-aspect ratio pillars) that are difficult or impossible to fabricate using currently available techniques. The microfluidic channels are further infused with conductive graphene nanoplatelet ink to realize two flexible piezoresistive microelectromechanical (MEMS) sensors (a bioinspired flow/tactile sensor and a dome-like force sensor) with embedded sensing elements. The MEMS force sensor is integrated into a Philips 9000 series electric shaver to demonstrate its application in "smart" consumer products in the future. Aided by current trends in industrialization and miniaturization in metal 3D printing, the proposed workflow shows promise as a low-temperature, scalable, and cleanroom-free technique of fabricating complex, soft polymeric, biomimetic structures, and embedded MEMS sensors.

9.
ACS Appl Mater Interfaces ; 11(38): 35201-35211, 2019 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-31460740

RESUMO

The growing demand for flexible, ultrasensitive, squeezable, skin-mountable, and wearable sensors tailored to the requirements of personalized health-care monitoring has fueled the necessity to explore novel nanomaterial-polymer composite-based sensors. Herein, we report a sensitive, 3D squeezable graphene-polydimethylsiloxane (PDMS) foam-based piezoresistive sensor realized by infusing multilayered graphene nanoparticles into a sugar-scaffolded porous PDMS foam structure. Static and dynamic compressive strain testing of the resulting piezoresistive foam sensors revealed two linear response regions with an average gauge factor of 2.87-8.77 over a strain range of 0-50%. Furthermore, the dynamic stimulus-response revealed the ability of the sensors to effectively track dynamic pressure up to a frequency of 70 Hz. In addition, the sensors displayed a high stability over 36000 cycles of cyclic compressive loading and 100 cycles of complete human gait motion. The 3D sensing foams were applied to experimentally demonstrate accurate human gait monitoring through both simulated gait models and real-time gait characterization experiments. The real-time gait experiments conducted demonstrate that the information of the pressure profile obtained at three locations in the shoe sole could not only differentiate between different kinds of human gaits including walking and running but also identify possible fall conditions. This work also demonstrates the capability of the sensors to differentiate between foot anatomies, such as a flat foot (low central arch) and a medium arch foot, which is biomechanically more efficient. Furthermore, the sensors were able to sense various basic joint movement responses demonstrating their suitability for personalized health-care applications.

10.
Nanomaterials (Basel) ; 9(7)2019 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-31262009

RESUMO

Sensor designs found in nature are optimal due to their evolution over millions of years, making them well-suited for sensing applications. However, replicating these complex, three-dimensional (3D), biomimetic designs in artificial and flexible sensors using conventional techniques such as lithography is challenging. In this paper, we introduce a new processing paradigm for the simplified fabrication of flexible sensors featuring complex and bioinspired structures. The proposed fabrication workflow entailed 3D-printing a metallic mold with complex and intricate 3D features such as a micropillar and a microchannel, casting polydimethylsiloxane (PDMS) inside the mold to obtain the desired structure, and drop-casting piezoresistive graphene nanoplatelets into the predesigned microchannel to form a flexible strain gauge. The graphene-on-PDMS strain gauge showed a high gauge factor of 37 as measured via cyclical tension-compression tests. The processing workflow was used to fabricate a flow sensor inspired by hair-like 'cilia' sensors found in nature, which comprised a cilia-inspired pillar and a cantilever with a microchannel that housed the graphene strain gauge. The sensor showed good sensitivity against both tactile and water flow stimuli, with detection thresholds as low as 12 µm in the former and 58 mm/s in the latter, demonstrating the feasibility of our method in developing flexible flow sensors.

11.
ACS Appl Nano Mater ; 1(5): 2206-2218, 2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29911687

RESUMO

This paper reports a versatile template-free method based on the hydrogen reduction of metallic salts for the synthesis of nanoporous Ni and alloys. The approach involves thermal decomposition and reduction of metallic precursors followed with metal cluster nucleation and ligament growth. Topological disordered porous architectures of metals with a controllable distribution of pore size and ligament size ranging from tens of nanometers to micrometers are synthesized. The reduction processes are scrutinized through X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. The formation mechanism of the nanoporous metal is qualitatively explained. The as-prepared nanoporous Ni was tested as binder-free current collectors for nickel oxalate anodes of lithium ion batteries. The nanoporous Ni electrodes deliver enhanced reversible capacities and cyclic performances compared with commercial Ni foam. It is confirmed that this synthesis method has versatility not only because it is suitable for different types of metallic salts precursors but also for various other metals and alloys.

12.
Carbohydr Polym ; 192: 61-68, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29691035

RESUMO

Cu0-mediated living radical polymerization (Cu0-mediated LRP) was employed in this research for the synthesis of starch-g-polyacrylamide (St-g-PAM). The use of a controlled radical grafting technique is necessary, as compared to the traditional free-radical polymerization methods, in order to obtain a well-defined structure of the final product. This is in turn essential for studying the relationship between such structure and the end-properties. Waxy potato starch-based water-soluble macroinitiator was first synthesized by esterification with 2-bromopropionyl bromide in the mixture of dimethylacetamide and lithium chloride. With the obtained macroinitiator, St-g-PAM was homogeneously synthesized by aqueous Cu0-mediated LRP using CuBr/hexamethylated tris(2-aminoethyl)amine (Me6Tren) as catalyst. The successful synthesis of the macroinitiator and St-g-PAM was proved by NMR, FT-IR, SEM, XRD and TGA analysis. The molecular weight and polydispersity of PAM chains were analyzed by gel permeation chromatography (GPC) after hydrolyzing the starch backbone. Monomer conversion was monitored by gas chromatography (GC), on the basis of which the kinetics were determined. A preliminarily rheological study was performed on aqueous solutions of the prepared materials.

13.
Polymers (Basel) ; 10(5)2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30966568

RESUMO

Polydimethylsiloxane (PDMS) is a silicone elastomer-based material that is used in various applications, including coatings, tubing, microfluidics, and medical implants. PDMS has been modified with hydrogel coatings to prevent fouling, which can be done through UV-mediated free radical polymerization using benzophenone. However, to the best of our knowledge, the properties of hydrogel coatings and their influence on the bulk properties of PDMS under various preparation conditions, such as the type and concentration of monomers, and UV treatment time, have never been investigated. Acrylate-based monomers were used to perform free radical polymerization on PDMS surfaces under various reaction conditions. This approach provides insights into the relationship between the hydrogel coating and bulk properties of PDMS. Altering the UV polymerization time and the monomer concentration resulted in different morphologies with different roughness and thickness of the hydrogel coating, as well as differences in the bulk material stiffness. The surface morphology of the coated PDMS was characterized by AFM. The cross section and thickness of the coatings were examined using scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The dependence of coating development on the monomer type and concentration used was evaluated by surface hydrophilicity, as measured by water contact angle. Elongation-until-break analysis revealed that specific reaction conditions affected the bulk properties and made the coated PDMS brittle. Therefore, boundary conditions have been identified to enable high quality hydrogel coating formation without affecting the bulk properties of the material.

14.
Soft Matter ; 12(1): 106-14, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26448555

RESUMO

This paper investigates the mechanics of hybrid shape memory polymer polystrene (PS) based nanocomposites with skeletal structures of CNFs/MWCNTs formed inside. Experimental results showed an increase of glass transition temperature (Tg) with CNF/MWCNT concentrations instead of a decrease of Tg in nanocomposites filled by spherical particles, and an increase in mechanical properties on both macro- and µm-scales. Compared with CNFs, MWCNTs showed a better mechanical enhancement for PS nanocomposites due to their uniform distribution in the nanocomposites. In nanoindentation tests using the Berkovich tips, indentation size effects and pile-up effects appeared obviously for the nanocomposites, but not for pure PS. Experimental results revealed the enhancement mechanisms of CNFs/MWCNTs related to the secondary structures formed by nanofillers, including two aspects, i.e., filler-polymer interfacial connections and geometrical factors of nanofillers. The filler-polymer interfacial connections were strongly dependent on temperature, thus leading to the opposite changing trend of loss tangent with nanofiller concentrations, respectively, at low and high temperature. The geometrical factors of nanofillers were related to testing scales, further leading to the appearance of pile-up effects for nanocomposites in the nanoindentation tests, in which the size of indents was close to the size of the nanofiller skeleton.

15.
Microsc Microanal ; 20(5): 1581-4, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24993882

RESUMO

A versatile method to fabricate taper-free micro-/nanopillars of large aspect ratio was developed with focused ion beam (FIB) cutting. The key features of the fabrication are a FIB with an incident angle of 90° to the long axis of the pillar that enables milling of the pillar sideways avoiding tapering and the FIB current can be reduced step by step so as to reduce possible radiation damage of the milled surface by Ga ions. A procedure to accurately determine the cross-section of each pillar was developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA