Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Glob Chang Biol ; 30(5): e17276, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683126

RESUMO

Boreal forests are frequently subjected to disturbances, including wildfire and clear-cutting. While these disturbances can cause soil carbon (C) losses, the long-term accumulation dynamics of soil C stocks during subsequent stand development is controlled by biological processes related to the balance of net primary production (NPP) and outputs via heterotrophic respiration and leaching, many of which remain poorly understood. We review the biological processes suggested to influence soil C accumulation in boreal forests. Our review indicates that median C accumulation rates following wildfire and clear-cutting are similar (0.15 and 0.20 Mg ha-1 year-1, respectively), however, variation between studies is extremely high. Further, while many individual studies show linear increases in soil C stocks through time after disturbance, there are indications that C stock recovery is fastest early to mid-succession (e.g. 15-80 years) and then slows as forests mature (e.g. >100 years). We indicate that the rapid build-up of soil C in younger stands appears not only driven by higher plant production, but also by a high rate of mycorrhizal hyphal production, and mycorrhizal suppression of saprotrophs. As stands mature, the balance between reductions in plant and mycorrhizal production, increasing plant litter recalcitrance, and ectomycorrhizal decomposers and saprotrophs have been highlighted as key controls on soil C accumulation rates. While some of these controls appear well understood (e.g. temporal patterns in NPP, changes in aboveground litter quality), many others remain research frontiers. Notably, very little data exists describing and comparing successional patterns of root production, mycorrhizal functional traits, mycorrhizal-saprotroph interactions, or C outputs via heterotrophic respiration and dissolved organic C following different disturbances. We argue that these less frequently described controls require attention, as they will be key not only for understanding ecosystem C balances, but also for representing these dynamics more accurately in soil organic C and Earth system models.


Assuntos
Carbono , Solo , Taiga , Incêndios Florestais , Solo/química , Carbono/metabolismo , Carbono/análise , Florestas , Micorrizas/fisiologia , Microbiologia do Solo , Agricultura Florestal
2.
Glob Chang Biol ; 30(3): e17246, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38501699

RESUMO

Northern peatlands provide a globally important carbon (C) store. Since the beginning of the 20th century, however, large areas of natural peatlands have been drained for biomass production across Fennoscandia. Today, drained peatland forests constitute a common feature of the managed boreal landscape, yet their ecosystem C balance and associated climate impact are not well understood, particularly within the nutrient-poor boreal region. In this study, we estimated the net ecosystem carbon balance (NECB) from a nutrient-poor drained peatland forest and an adjacent natural mire in northern Sweden by integrating terrestrial carbon dioxide (CO2 ) and methane (CH4 ) fluxes with aquatic losses of dissolved organic C (DOC) and inorganic C based on eddy covariance and stream discharge measurements, respectively, over two hydrological years. Since the forest included a dense spruce-birch area and a sparse pine area, we were able to further evaluate the effect of contrasting forest structure on the NECB and component fluxes. We found that the drained peatland forest was a net C sink with a 2-year mean NECB of -115 ± 5 g C m-2 year-1 while the adjacent mire was close to C neutral with 14.6 ± 1.7 g C m-2 year-1 . The NECB of the drained peatland forest was dominated by the net CO2 exchange (net ecosystem exchange [NEE]), whereas NEE and DOC export fluxes contributed equally to the mire NECB. We further found that the C sink strength in the sparse pine forest area (-153 ± 8 g C m-2 year-1 ) was about 1.5 times as high as in the dense spruce-birch forest area (-95 ± 8 g C m-2 year-1 ) due to enhanced C uptake by ground vegetation and lower DOC export. Our study suggests that historically drained peatland forests in nutrient-poor boreal regions may provide a significant net ecosystem C sink and associated climate benefits.


Assuntos
Sequestro de Carbono , Ecossistema , Dióxido de Carbono/análise , Suécia , Solo/química , Florestas , Metano/análise
3.
Sci Rep ; 13(1): 20218, 2023 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-37980440

RESUMO

Drainage for forestry has created ~ 1 million km of artificial waterways in Sweden, making it one of the largest human-induced environmental disturbances in the country. These extensive modifications of both peatland and mineral soil dominated landscapes still carry largely unknown, but potentially enormous environmental legacy effects. However, the consequences of contemporary ditch management strategies, such as hydrological restoration via ditch blocking or enhancing forest drainage to promote biomass production via ditch cleaning, on water resources and greenhouse gas (GHG) fluxes are unclear. To close the gap between science and management, we have developed a unique field research platform to experimentally evaluate key environmental strategies for drained northern landscapes with the aim to avoid further environmental degeneration. The Trollberget Experimental Area (TEA) includes replicated and controlled treatments applied at the catchment scale based on a BACI approach (before-after and control-impact). The treatments represent the dominant ecosystem types impacted by ditching in Sweden and the boreal zone: (1) rewetting of a drained peatland, (2) ditch cleaning in productive upland forests and (3) leaving these ditches unmanaged. Here we describe the TEA platform, report initial results, suggest ways forward for how to best manage this historical large-scale alteration of the boreal landscape, as well as warn against applying these treatments broadly before more long-term results are reported.

4.
Sci Rep ; 13(1): 14909, 2023 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-37689813

RESUMO

Boreal forests sequester and store vast carbon (C) pools that may be subject to significant feedback effects induced by climatic warming. The boreal landscape consists of a mosaic of forests and peatlands with wide variation in total C stocks, making it important to understand the factors controlling C pool sizes in different ecosystems. We therefore quantified the total C stocks in the organic layer, mineral soil, and tree biomass in 430 plots across a 68 km2 boreal catchment. The organic layer held the largest C pool, accounting for 39% of the total C storage; tree and mineral C pools accounted for 38% and 23%, respectively. The size of the soil C pool was positively related to modelled soil moisture conditions, especially in the organic soil layer (R2 = 0.50). Conversely, the tree C pool exhibited a unimodal relationship: storage was highest under intermediate wetness conditions. The magnitude and variation in the total soil C stocks observed in this work were comparable to those found at the national level in Sweden, suggesting that C accumulation in boreal landscapes is more sensitive to local variation resulting primarily from differences in soil moisture conditions than to regional differences in climate, nitrogen deposition, and parent material.


Assuntos
Ecossistema , Taiga , Florestas , Carbono , Solo , Árvores
5.
Sci Total Environ ; 903: 166149, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-37567315

RESUMO

Carbon dioxide (CO2) uptake by plant photosynthesis, referred to as gross primary production (GPP) at the ecosystem level, is sensitive to environmental factors, including pollutant exposure, pollutant uptake, and changes in the scattering of solar shortwave irradiance (SWin) - the energy source for photosynthesis. The 2020 spring lockdown due to COVID-19 resulted in improved air quality and atmospheric transparency, providing a unique opportunity to assess the impact of air pollutants on terrestrial ecosystem functioning. However, detecting these effects can be challenging as GPP is influenced by other meteorological drivers and management practices. Based on data collected from 44 European ecosystem-scale CO2 flux monitoring stations, we observed significant changes in spring GPP at 34 sites during 2020 compared to 2015-2019. Among these, 14 sites showed an increase in GPP associated with higher SWin, 10 sites had lower GPP linked to atmospheric and soil dryness, and seven sites were subjected to management practices. The remaining three sites exhibited varying dynamics, with one experiencing colder and rainier weather resulting in lower GPP, and two showing higher GPP associated with earlier spring melts. Analysis using the regional atmospheric chemical transport model (LOTOS-EUROS) indicated that the ozone (O3) concentration remained relatively unchanged at the research sites, making it unlikely that O3 exposure was the dominant factor driving the primary production anomaly. In contrast, SWin increased by 9.4 % at 36 sites, suggesting enhanced GPP possibly due to reduced aerosol optical depth and cloudiness. Our findings indicate that air pollution and cloudiness may weaken the terrestrial carbon sink by up to 16 %. Accurate and continuous ground-based observations are crucial for detecting and attributing subtle changes in terrestrial ecosystem functioning in response to environmental and anthropogenic drivers.

6.
Glob Chang Biol ; 29(15): e1-e3, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37260194

RESUMO

An essential metric for describing carbon dynamics in managed forest landscapes is the recovery time of the carbon balance after clear-cutting. Here, we demonstrate how the age-dependent mathematical trajectory is affected by both the selected model and data availability, leading to considerable uncertainty in the modelling of the net ecosystem production (NEP) over stand age. We further show that the initial carbon loss estimates associated with the timing of the source-sink transition (SST) are significant, but may have a limited effect on the total carbon sequestration at the end of the standard (RP, 120 years) or optimal (OCS) rotation periods.


Assuntos
Ecossistema , Árvores , Carbono , Incerteza , Florestas , Sequestro de Carbono
7.
Sci Total Environ ; 895: 165132, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37379918

RESUMO

Vegetation holds the key to many properties that make natural mires unique, such as surface microtopography, high biodiversity values, effective carbon sequestration and regulation of water and nutrient fluxes across the landscape. Despite this, landscape controls behind mire vegetation patterns have previously been poorly described at large spatial scales, which limits the understanding of basic drivers underpinning mire ecosystem services. We studied catchment controls on mire nutrient regimes and vegetation patterns using a geographically constrained natural mire chronosequence along the isostatically rising coastline in Northern Sweden. By comparing mires of different ages, we can partition vegetation patterns caused by long-term mire succession (<5000 years) and present-day vegetation responses to catchment eco-hydrological settings. We used the remote sensing based normalized difference vegetation index (NDVI) to describe mire vegetation and combined peat physicochemical measures with catchment properties to identify the most important factors that determine mire NDVI. We found strong evidence that mire NDVI depends on nutrient inputs from the catchment area or underlying mineral soil, especially concerning phosphorus and potassium concentrations. Steep mire and catchment slopes, dry conditions and large catchment areas relative to mire areas were associated with higher NDVI. We also found long-term successional patterns, with lower NDVI in older mires. Importantly, the NDVI should be used to describe mire vegetation patterns in open mires if the focus is on surface vegetation, since the canopy cover in tree-covered mires completely dominated the NDVI signal. With our study approach, we can quantitatively describe the connection between landscape properties and mire nutrient regime. Our results confirm that mire vegetation responds to the upslope catchment area, but importantly, also suggest that mire and catchment aging can override the role of catchment influence. This effect was clear across mires of all ages, but was strongest in younger mires.


Assuntos
Biodiversidade , Ecossistema , Humanos , Idoso , Árvores , Hidrologia , Telemetria , Solo
8.
New Phytol ; 239(6): 2166-2179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37148187

RESUMO

Nitrogen (N) fertilization increases biomass and soil organic carbon (SOC) accumulation in boreal pine forests, but the underlying mechanisms remain uncertain. At two Scots pine sites, one undergoing annual N fertilization and the other a reference, we sought to explain these responses. We measured component fluxes, including biomass production, SOC accumulation, and respiration, and summed them into carbon budgets. We compared the resulting summations to ecosystem fluxes measured by eddy covariance. N fertilization increased most component fluxes (P < 0.05), especially SOC accumulation (20×). Only fine-root, mycorrhiza, and exudate production decreased, by 237 (SD = 28) g C m-2 yr-1 . Stemwood production increases were ascribed to this partitioning shift, gross primary production (GPP), and carbon-use efficiency, in that order. The methods agreed in their estimates of GPP in both stands (P > 0.05), but the components detected an increase in net ecosystem production (NEP) (190 (54) g C m-2 yr-1 ; P < 0.01) that eddy covariance did not (19 (62) g C m-2 yr-1 ; ns). The pairing of plots, the simplicity of the sites, and the strength of response provide a compelling description of N effects on the C budget. However, the disagreement between methods calls for further paired tests of N fertilization effects in simple forest ecosystems.


Assuntos
Ecossistema , Pinus sylvestris , Carbono , Árvores/fisiologia , Nitrogênio , Solo , Florestas , Dióxido de Carbono
9.
Glob Chang Biol ; 29(8): 2313-2334, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36630533

RESUMO

Wetlands are the largest natural source of methane (CH4 ) to the atmosphere. The eddy covariance method provides robust measurements of net ecosystem exchange of CH4 , but interpreting its spatiotemporal variations is challenging due to the co-occurrence of CH4 production, oxidation, and transport dynamics. Here, we estimate these three processes using a data-model fusion approach across 25 wetlands in temperate, boreal, and Arctic regions. Our data-constrained model-iPEACE-reasonably reproduced CH4 emissions at 19 of the 25 sites with normalized root mean square error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of 0.87. Among the three processes, CH4 production appeared to be the most important process, followed by oxidation in explaining inter-site variations in CH4 emissions. Based on a sensitivity analysis, CH4 emissions were generally more sensitive to decreased water table than to increased gross primary productivity or soil temperature. For periods with leaf area index (LAI) of ≥20% of its annual peak, plant-mediated transport appeared to be the major pathway for CH4 transport. Contributions from ebullition and diffusion were relatively high during low LAI (<20%) periods. The lag time between CH4 production and CH4 emissions tended to be short in fen sites (3 ± 2 days) and long in bog sites (13 ± 10 days). Based on a principal component analysis, we found that parameters for CH4 production, plant-mediated transport, and diffusion through water explained 77% of the variance in the parameters across the 19 sites, highlighting the importance of these parameters for predicting wetland CH4 emissions across biomes. These processes and associated parameters for CH4 emissions among and within the wetlands provide useful insights for interpreting observed net CH4 fluxes, estimating sensitivities to biophysical variables, and modeling global CH4 fluxes.


Assuntos
Ecossistema , Áreas Alagadas , Metano/metabolismo , Regiões Árticas , Solo , Dióxido de Carbono/análise
10.
Glob Chang Biol ; 29(4): 1119-1132, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36464908

RESUMO

Boreal forests are important global carbon (C) sinks and, therefore, considered as a key element in climate change mitigation policies. However, their actual C sink strength is uncertain and under debate, particularly for the actively managed forests in the boreal regions of Fennoscandia. In this study, we use an extensive set of biometric- and chamber-based C flux data collected in 50 forest stands (ranging from 5 to 211 years) over 3 years (2016-2018) with the aim to explore the variations of the annual net ecosystem production (NEP; i.e., the ecosystem C balance) across a 68 km2 managed boreal forest landscape in northern Sweden. Our results demonstrate that net primary production rather than heterotrophic respiration regulated the spatio-temporal variations of NEP across the heterogeneous mosaic of the managed boreal forest landscape. We further find divergent successional patterns of NEP in our managed forests relative to naturally regenerating boreal forests, including (i) a fast recovery of the C sink function within the first decade after harvest due to the rapid establishment of a productive understory layer and (ii) a sustained C sink in old stands (131-211 years). We estimate that the rotation period for optimum C sequestration extends to 138 years, which over multiple rotations results in a long-term C sequestration rate of 86.5 t C ha-1 per rotation. Our study highlights the potential of forest management to maximize C sequestration of boreal forest landscapes and associate climate change mitigation effects by developing strategies that optimize tree biomass production rather than heterotrophic soil C emissions.


Assuntos
Ecossistema , Taiga , Carbono , Florestas , Biomassa , Árvores , Sequestro de Carbono
11.
Ecol Process ; 11(1): 7, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35127311

RESUMO

BACKGROUND: Most North American temperate forests are plantation or regrowth forests, which are actively managed. These forests are in different stages of their growth cycles and their ability to sequester atmospheric carbon is affected by extreme weather events. In this study, the impact of heat and drought events on carbon sequestration in an age-sequence (80, 45, and 17 years as of 2019) of eastern white pine (Pinus strobus L.) forests in southern Ontario, Canada was examined using eddy covariance flux measurements from 2003 to 2019. RESULTS: Over the 17-year study period, the mean annual values of net ecosystem productivity (NEP) were 180 ± 96, 538 ± 177 and 64 ± 165 g C m-2 yr-1 in the 80-, 45- and 17-year-old stands, respectively, with the highest annual carbon sequestration rate observed in the 45-year-old stand. We found that air temperature (Ta) was the dominant control on NEP in all three different-aged stands and drought, which was a limiting factor for both gross ecosystem productivity (GEP) and ecosystems respiration (RE), had a smaller impact on NEP. However, the simultaneous occurrence of heat and drought events during the early growing seasons or over the consecutive years had a significant negative impact on annual NEP in all three forests. We observed a similar trend of NEP decline in all three stands over three consecutive years that experienced extreme weather events, with 2016 being a hot and dry, 2017 being a dry, and 2018 being a hot year. The youngest stand became a net source of carbon for all three of these years and the oldest stand became a small source of carbon for the first time in 2018 since observations started in 2003. However, in 2019, all three stands reverted to annual net carbon sinks. CONCLUSIONS: Our study results indicate that the timing, frequency and concurrent or consecutive occurrence of extreme weather events may have significant implications for carbon sequestration in temperate conifer forests in Eastern North America. This study is one of few globally available to provide long-term observational data on carbon exchanges in different-aged temperate plantation forests. It highlights interannual variability in carbon fluxes and enhances our understanding of the responses of these forest ecosystems to extreme weather events. Study results will help in developing climate resilient and sustainable forestry practices to offset atmospheric greenhouse gas emissions and improving simulation of carbon exchange processes in terrestrial ecosystem models.

12.
Glob Chang Biol ; 28(6): 2111-2123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927310

RESUMO

Understanding the critical soil moisture (SM) threshold (θcrit ) of plant water stress and land surface energy partitioning is a basis to evaluate drought impacts and improve models for predicting future ecosystem condition and climate. Quantifying the θcrit across biomes and climates is challenging because observations of surface energy fluxes and SM remain sparse. Here, we used the latest database of eddy covariance measurements to estimate θcrit across Europe by evaluating evaporative fraction (EF)-SM relationships and investigating the covariance between vapor pressure deficit (VPD) and gross primary production (GPP) during SM dry-down periods. We found that the θcrit and soil matric potential threshold in Europe are 16.5% and -0.7 MPa, respectively. Surface energy partitioning characteristics varied among different vegetation types; EF in savannas had the highest sensitivities to SM in water-limited stage, and the lowest in forests. The sign of the covariance between daily VPD and GPP consistently changed from positive to negative during dry-down across all sites when EF shifted from relatively high to low values. This sign of the covariance changed after longer period of SM decline in forests than in grasslands and savannas. Estimated θcrit from the VPD-GPP covariance method match well with the EF-SM method, showing this covariance method can be used to detect the θcrit . We further found that soil texture dominates the spatial variability of θcrit while shortwave radiation and VPD are the major drivers in determining the spatial pattern of EF sensitivities. Our results highlight for the first time that the sign change of the covariance between daily VPD and GPP can be used as an indicator of how ecosystems transition from energy to SM limitation. We also characterized the corresponding θcrit and its drivers across diverse ecosystems in Europe, an essential variable to improve the representation of water stress in land surface models.


Assuntos
Ecossistema , Solo , Desidratação , Secas , Florestas , Humanos
13.
Sci Total Environ ; 788: 147806, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34029811

RESUMO

Knowledge of the response of grassland phenology towards climatic factors is essential to improve our understanding of ecological processes under global warming. To date, however, it remains unclear how climate change and associated changes in vegetation dynamics might affect autumn phenology of grasslands at the global scale. In this study, the trends in start of growing season (SOS) and end of growing season (EOS) dates were explored using remote sensing data (1981-2014). The responses of EOS to preseason temperature, rainfall, SOS, and net primary productivity (NPP) were then investigated for the mid-latitude (30°N ~ 55°N) grasslands of the Northern Hemisphere. The remotely-sensed SOS/EOS and PhenoCam-based SOS/EOS were first compared and a good correlation was observed. Trend analysis revealed that the time span of SOS/EOS (from the earliest SOS/EOS to the last SOS/EOS) and the growing season length (from SOS to EOS) have extended for the entire study region. Furthermore, a forward shift in all SOS pixels was observed in Central-West Asian grasslands, whereas no such significant trend was observed for North American grasslands and East Asian grasslands. The duration of EOS completion had shortened within North American grasslands but lengthened in Asian grasslands. Next, correlation analysis uncovered a stronger relationship between EOS and previous rainfall than between EOS and temperature, indicating the key role of water availability in controlling autumn phenology. The sensitivity of EOS to both temperature and rainfall was higher in drier and warmer locations. Moreover, a significant negative correlation between EOS and SOS was observed in part of the study region, but no significant relationship between NPP and EOS was observed. Overall, this study highlights the spatially intensified heterogeneity of spring and autumn phenology in northern grasslands and that climatic changes in precipitation might act as key drivers for modifying autumn phenology of grassland vegetation in the Northern Hemisphere.

14.
Nat Commun ; 12(1): 2266, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859182

RESUMO

Wetland methane (CH4) emissions ([Formula: see text]) are important in global carbon budgets and climate change assessments. Currently, [Formula: see text] projections rely on prescribed static temperature sensitivity that varies among biogeochemical models. Meta-analyses have proposed a consistent [Formula: see text] temperature dependence across spatial scales for use in models; however, site-level studies demonstrate that [Formula: see text] are often controlled by factors beyond temperature. Here, we evaluate the relationship between [Formula: see text] and temperature using observations from the FLUXNET-CH4 database. Measurements collected across the globe show substantial seasonal hysteresis between [Formula: see text] and temperature, suggesting larger [Formula: see text] sensitivity to temperature later in the frost-free season (about 77% of site-years). Results derived from a machine-learning model and several regression models highlight the importance of representing the large spatial and temporal variability within site-years and ecosystem types. Mechanistic advancements in biogeochemical model parameterization and detailed measurements in factors modulating CH4 production are thus needed to improve global CH4 budget assessments.

15.
Glob Chang Biol ; 27(15): 3582-3604, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33914985

RESUMO

While wetlands are the largest natural source of methane (CH4 ) to the atmosphere, they represent a large source of uncertainty in the global CH4 budget due to the complex biogeochemical controls on CH4 dynamics. Here we present, to our knowledge, the first multi-site synthesis of how predictors of CH4 fluxes (FCH4) in freshwater wetlands vary across wetland types at diel, multiday (synoptic), and seasonal time scales. We used several statistical approaches (correlation analysis, generalized additive modeling, mutual information, and random forests) in a wavelet-based multi-resolution framework to assess the importance of environmental predictors, nonlinearities and lags on FCH4 across 23 eddy covariance sites. Seasonally, soil and air temperature were dominant predictors of FCH4 at sites with smaller seasonal variation in water table depth (WTD). In contrast, WTD was the dominant predictor for wetlands with smaller variations in temperature (e.g., seasonal tropical/subtropical wetlands). Changes in seasonal FCH4 lagged fluctuations in WTD by ~17 ± 11 days, and lagged air and soil temperature by median values of 8 ± 16 and 5 ± 15 days, respectively. Temperature and WTD were also dominant predictors at the multiday scale. Atmospheric pressure (PA) was another important multiday scale predictor for peat-dominated sites, with drops in PA coinciding with synchronous releases of CH4 . At the diel scale, synchronous relationships with latent heat flux and vapor pressure deficit suggest that physical processes controlling evaporation and boundary layer mixing exert similar controls on CH4 volatilization, and suggest the influence of pressurized ventilation in aerenchymatous vegetation. In addition, 1- to 4-h lagged relationships with ecosystem photosynthesis indicate recent carbon substrates, such as root exudates, may also control FCH4. By addressing issues of scale, asynchrony, and nonlinearity, this work improves understanding of the predictors and timing of wetland FCH4 that can inform future studies and models, and help constrain wetland CH4 emissions.


Assuntos
Metano , Áreas Alagadas , Dióxido de Carbono , Ecossistema , Água Doce , Estações do Ano
16.
Glob Chang Biol ; 27(17): 4040-4059, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33913236

RESUMO

The regional variability in tundra and boreal carbon dioxide (CO2 ) fluxes can be high, complicating efforts to quantify sink-source patterns across the entire region. Statistical models are increasingly used to predict (i.e., upscale) CO2 fluxes across large spatial domains, but the reliability of different modeling techniques, each with different specifications and assumptions, has not been assessed in detail. Here, we compile eddy covariance and chamber measurements of annual and growing season CO2 fluxes of gross primary productivity (GPP), ecosystem respiration (ER), and net ecosystem exchange (NEE) during 1990-2015 from 148 terrestrial high-latitude (i.e., tundra and boreal) sites to analyze the spatial patterns and drivers of CO2 fluxes and test the accuracy and uncertainty of different statistical models. CO2 fluxes were upscaled at relatively high spatial resolution (1 km2 ) across the high-latitude region using five commonly used statistical models and their ensemble, that is, the median of all five models, using climatic, vegetation, and soil predictors. We found the performance of machine learning and ensemble predictions to outperform traditional regression methods. We also found the predictive performance of NEE-focused models to be low, relative to models predicting GPP and ER. Our data compilation and ensemble predictions showed that CO2 sink strength was larger in the boreal biome (observed and predicted average annual NEE -46 and -29 g C m-2  yr-1 , respectively) compared to tundra (average annual NEE +10 and -2 g C m-2  yr-1 ). This pattern was associated with large spatial variability, reflecting local heterogeneity in soil organic carbon stocks, climate, and vegetation productivity. The terrestrial ecosystem CO2 budget, estimated using the annual NEE ensemble prediction, suggests the high-latitude region was on average an annual CO2 sink during 1990-2015, although uncertainty remains high.


Assuntos
Dióxido de Carbono , Ecossistema , Carbono , Dióxido de Carbono/análise , Reprodutibilidade dos Testes , Estações do Ano , Solo , Tundra , Incerteza
17.
Environ Sci Technol ; 55(2): 1310-1318, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33389989

RESUMO

Biological nitrogen fixation (BNF) represents the natural pathway by which mosses meet their demands for bioavailable/reactive nitrogen (Nr) in peatlands. However, following intensification of nitrogen fertilizer and fossil fuel use, atmospheric Nr deposition has increased exposing peatlands to Nr loading often above the ecological threshold. As BNF is energy intensive, therefore, it is unclear whether BNF shuts down when Nr availability is no longer a rarity. We studied the response of BNF under a gradient of Nr deposition extending over decades in three peatlands in the U.K., and at a background deposition peatland in Sweden. Experimental nitrogen fertilization plots in the Swedish site were also evaluated for BNF activity. In situ BNF activity of peatlands receiving Nr deposition of 6, 17, and 27 kg N ha-1 yr-1 was not shut down but rather suppressed by 54, 69, and 74%, respectively, compared to the rates under background Nr deposition of ∼2 kg N ha-1 yr-1. These findings were corroborated by similar BNF suppression at the fertilization plots in Sweden. Therefore, contribution of BNF in peatlands exposed to chronic Nr deposition needs accounting when modeling peatland's nitrogen pools, given that nitrogen availability exerts a key control on the carbon capture of peatlands, globally.


Assuntos
Briófitas , Fixação de Nitrogênio , Carbono , Nitrogênio/análise , Suécia
19.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190747, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892724

RESUMO

In summer 2018, Europe experienced a record drought, but it remains unknown how the drought affected ecosystem carbon dynamics. Using observations from 34 eddy covariance sites in different biomes across Europe, we studied the sensitivity of gross primary productivity (GPP) to environmental drivers during the summer drought of 2018 versus the reference summer of 2016. We found a greater drought-induced decline of summer GPP in grasslands (-38%) than in forests (-10%), which coincided with reduced evapotranspiration and soil water content (SWC). As compared to the 'normal year' of 2016, GPP in different ecosystems exhibited more negative sensitivity to summer air temperature (Ta) but stronger positive sensitivity to SWC during summer drought in 2018, that is, a stronger reduction of GPP with soil moisture deficit. We found larger negative effects of Ta and vapour pressure deficit (VPD) but a lower positive effect of photosynthetic photon flux density on GPP in 2018 compared to 2016, which contributed to reduced summer GPP in 2018. Our results demonstrate that high temperature-induced increases in VPD and decreases in SWC aggravated drought impacts on GPP. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Atmosfera/análise , Mudança Climática , Secas , Florestas , Pradaria , Fenômenos Fisiológicos Vegetais , Europa (Continente) , Estações do Ano
20.
Philos Trans R Soc Lond B Biol Sci ; 375(1810): 20190516, 2020 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-32892726

RESUMO

The Nordic region was subjected to severe drought in 2018 with a particularly long-lasting and large soil water deficit in Denmark, Southern Sweden and Estonia. Here, we analyse the impact of the drought on carbon and water fluxes in 11 forest ecosystems of different composition: spruce, pine, mixed and deciduous. We assess the impact of drought on fluxes by estimating the difference (anomaly) between year 2018 and a reference year without drought. Unexpectedly, the evaporation was only slightly reduced during 2018 compared to the reference year at two sites while it increased or was nearly unchanged at all other sites. This occurred under a 40 to 60% reduction in mean surface conductance and the concurrent increase in evaporative demand due to the warm and dry weather. The anomaly in the net ecosystem productivity (NEP) was 93% explained by a multilinear regression with the anomaly in heterotrophic respiration and the relative precipitation deficit as independent variables. Most of the variation (77%) was explained by the heterotrophic component. Six out of 11 forests reduced their annual NEP with more than 50 g C m-2 yr-1 during 2018 as compared to the reference year. The NEP anomaly ranged between -389 and +74 g C m-2 yr-1 with a median value of -59 g C m-2 yr-1. This article is part of the theme issue 'Impacts of the 2018 severe drought and heatwave in Europe: from site to continental scale'.


Assuntos
Carbono/análise , Mudança Climática , Secas , Solo/química , Água/análise , Ciclo do Carbono , Florestas , Conceitos Meteorológicos , Países Escandinavos e Nórdicos , Estações do Ano
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...