Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Radiat Res ; 191(3): 217-231, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30694733

RESUMO

Fractionated whole-brain irradiation for the treatment of intracranial neoplasia causes progressive neurodegeneration and neuroinflammation. The long-term consequences of single-fraction high-dose irradiation to the brain are unknown. To assess the late effects of brain irradiation we compared transcriptomic gene expression profiles from nonhuman primates (NHP; rhesus macaques Macaca mulatta) receiving single-fraction total-body irradiation (TBI; n = 5, 6.75-8.05 Gy, 6-9 years prior to necropsy) to those receiving fractionated whole-brain irradiation (fWBI; n = 5, 40 Gy, 8 × 5 Gy fractions; 12 months prior to necropsy) and control comparators (n = 5). Gene expression profiles from the dorsolateral prefrontal cortex (DLPFC), hippocampus (HC) and deep white matter (WM; centrum semiovale) were compared. Stratified analyses by treatment and region revealed that radiation-induced transcriptomic alterations were most prominent in animals receiving fWBI, and primarily affected white matter in both TBI and fWBI groups. Unsupervised canonical and ontologic analysis revealed that TBI or fWBI animals demonstrated shared patterns of injury, including white matter neuroinflammation, increased expression of complement factors and T-cell activation. Both irradiated groups also showed evidence of impaired glutamatergic neurotransmission and signal transduction within white matter, but not within the dorsolateral prefrontal cortex or hippocampus. Signaling pathways and structural elements involved in extracellular matrix (ECM) deposition and remodeling were noted within the white matter of animals receiving fWBI, but not of those receiving TBI. These findings indicate that those animals receiving TBI are susceptible to neurological injury similar to that observed after fWBI, and these changes persist for years postirradiation. Transcriptomic profiling reaffirmed that macrophage/microglial-mediated neuroinflammation is present in radiation-induced brain injury (RIBI), and our data provide novel evidence that the complement system may contribute to the pathogenesis of RIBI. Finally, these data challenge the assumption that the hippocampus is the predilection site of injury in RIBI, and indicate that impaired glutamatergic neurotransmission may occur in white matter injury.


Assuntos
Lesões Experimentais por Radiação/etiologia , Lesões Experimentais por Radiação/genética , Substância Branca/efeitos da radiação , Animais , Relação Dose-Resposta à Radiação , Ontologia Genética , Macaca mulatta , Masculino , Lesões Experimentais por Radiação/patologia , Fatores de Tempo , Transcriptoma/efeitos da radiação , Substância Branca/metabolismo , Substância Branca/patologia
2.
J Cancer Res Clin Oncol ; 145(2): 337-344, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30417218

RESUMO

INTRODUCTION: Radiation-induced cognitive decline (RICD) is a late effect of radiotherapy (RT) occurring in 30-50% of irradiated brain tumor survivors. In preclinical models, pioglitazone prevents RICD but there are little safety data on its use in non-diabetic patients. We conducted a dose-escalation trial to determine the safety of pioglitazone taken during and after brain irradiation. METHODS: We enrolled patients > 18 years old with primary or metastatic brain tumors slated to receive at least 10 treatments of RT (≤ 3 Gy per fraction). We evaluated the safety of pioglitazone at 22.5 mg and 45 mg with a dose-escalation phase and dose-expansion phase. Pioglitazone was taken daily during RT and for 6 months after. RESULTS: 18 patients with a mean age of 54 were enrolled between 2010 and 2014. 14 patients had metastatic brain tumors and were treated with whole brain RT. Four patients had primary brain tumors and received partial brain RT and concurrent chemotherapy. No DLTs were identified. In the dose-escalation phase, there were only three instances of grade ≥ 3 toxicity: one instance of neuropathy in a patient receiving 22.5 mg, one instance of fatigue in a patient receiving 22.5 mg and one instance of dizziness in a patient receiving 45 mg. The attribution in each of these cases was considered "possible." In the dose-expansion phase, nine patients received 45 mg and there was only one grade 3 toxicity (fatigue) possibly attributable to pioglitazone. CONCLUSION: Pioglitazone was well tolerated by brain tumor patients undergoing RT. 45 mg is a safe dose to use in future efficacy trials.


Assuntos
Neoplasias Encefálicas/tratamento farmacológico , Hipoglicemiantes/uso terapêutico , Pioglitazona/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundário , Feminino , Seguimentos , Humanos , Metástase Linfática , Masculino , Dose Máxima Tolerável , Pessoa de Meia-Idade , Segurança do Paciente , Prognóstico , Radioterapia Conformacional , Taxa de Sobrevida
3.
Radiat Res ; 190(4): 361-373, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30016219

RESUMO

Late-delayed radiation-induced brain injury (RIBI) is a major adverse effect of fractionated whole-brain irradiation (fWBI). Characterized by progressive cognitive dysfunction, and associated cerebrovascular and white matter injury, RIBI deleteriously affects quality of life for cancer patients. Despite extensive morphological characterization of the injury, the pathogenesis is unclear, thus limiting the development of effective therapeutics. We previously reported that RIBI is associated with increased gene expression of the extracellular matrix (ECM) protein fibronectin (FN1). We hypothesized that fibronectin contributes to perivascular ECM, which may impair diffusion to the dependent parenchyma, thus contributing to the observed cognitive decline. The goal of this study was to determine the localization of fibronectin in RIBI and further characterize the composition of perivascular ECM, as well as identify the cell of origin for FN1 by in situ hybridization. Briefly, fibronectin localized to the vascular basement membrane of morphologically normal blood vessels from control comparators and animals receiving fWBI, and to the perivascular space of edematous and fibrotic vascular phenotypes of animals receiving fWBI. Additional mild diffuse parenchymal staining in areas of vascular injury suggested blood-brain-barrier disruption and plasma fibronectin extravasation. Perivascular ECM lacked amyloid and contained lesser amounts of collagens I and IV, which localized to the basement membrane. These changes occurred in the absence of alterations in microvascular area fraction or microvessel density. Fibronectin transcripts were rarely expressed in control comparators, and were most strongly induced within cerebrovascular endothelial and vascular smooth muscle cells after fWBI. Our results demonstrate that fibronectin is produced by cerebrovascular endothelial and smooth muscle cells in late-delayed RIBI and contributes to perivascular ECM, which we postulate may contribute to diffusion barrier formation. We propose that pathways that antagonize fibronectin deposition and matrix assembly or enhance degradation may serve as potential therapeutic targets in RIBI.


Assuntos
Lesões Encefálicas/metabolismo , Circulação Cerebrovascular , Endotélio Vascular/metabolismo , Matriz Extracelular/metabolismo , Fibronectinas/fisiologia , Músculo Liso Vascular/metabolismo , Lesões Experimentais por Radiação/metabolismo , Animais , Encéfalo/irrigação sanguínea , Encéfalo/efeitos da radiação , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Fibronectinas/biossíntese , Expressão Gênica , Macaca mulatta , Masculino , Lesões Experimentais por Radiação/patologia
4.
Adv Radiat Oncol ; 2(4): 624-629, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29204530

RESUMO

PURPOSE: Radiation-induced cognitive decline is relatively common after treatment for primary and metastatic brain tumors; however, identifying dosimetric parameters that are predictive of radiation-induced cognitive decline is difficult due to the heterogeneity of patient characteristics. The memory function is especially susceptible to radiation effects after treatment. The objective of this study is to correlate volumetric radiation doses received by critical neuroanatomic structures to post-radiation therapy (RT) memory impairment. METHODS AND MATERIALS: Between 2008 and 2011, 53 patients with primary brain malignancies were treated with conventionally fractionated RT in prospectively accrued clinical trials performed at our institution. Dose-volume histogram analysis was performed for the hippocampus, parahippocampus, amygdala, and fusiform gyrus. Hopkins Verbal Learning Test-Revised scores were obtained at least 6 months after RT. Impairment was defined as an immediate recall score ≤15. For each anatomic region, serial regression was performed to correlate volume receiving a given dose (VD(Gy)) with memory impairment. RESULTS: Hippocampal V53.4Gy to V60.9Gy significantly predicted post-RT memory impairment (P < .05). Within this range, the hippocampal V55Gy was the most significant predictor (P = .004). Hippocampal V55Gy of 0%, 25%, and 50% was associated with tumor-induced impairment rates of 14.9% (95% confidence interval [CI], 7.2%-28.7%), 45.9% (95% CI, 24.7%-68.6%), and 80.6% (95% CI, 39.2%-96.4%), respectively. CONCLUSIONS: The hippocampal V55Gy is a significant predictor for impairment, and a limiting dose below 55 Gy may minimize radiation-induced cognitive impairment.

5.
J Neurooncol ; 135(2): 403-411, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28828698

RESUMO

Stereotactic radiosurgery (SRS) without whole brain radiotherapy (WBRT) for brain metastases can avoid WBRT toxicities, but with risk of subsequent distant brain failure (DBF). Sole use of number of metastases to triage patients may be an unrefined method. Data on 1354 patients treated with SRS monotherapy from 2000 to 2013 for new brain metastases was collected across eight academic centers. The cohort was divided into training and validation datasets and a prognostic model was developed for time to DBF. We then evaluated the discrimination and calibration of the model within the validation dataset, and confirmed its performance with an independent contemporary cohort. Number of metastases (≥8, HR 3.53 p = 0.0001), minimum margin dose (HR 1.07 p = 0.0033), and melanoma histology (HR 1.45, p = 0.0187) were associated with DBF. A prognostic index derived from the training dataset exhibited ability to discriminate patients' DBF risk within the validation dataset (c-index = 0.631) and Heller's explained relative risk (HERR) = 0.173 (SE = 0.048). Absolute number of metastases was evaluated for its ability to predict DBF in the derivation and validation datasets, and was inferior to the nomogram. A nomogram high-risk threshold yielding a 2.1-fold increased need for early WBRT was identified. Nomogram values also correlated to number of brain metastases at time of failure (r = 0.38, p < 0.0001). We present a multi-institutionally validated prognostic model and nomogram to predict risk of DBF and guide risk-stratification of patients who are appropriate candidates for radiosurgery versus upfront WBRT.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/radioterapia , Recidiva Local de Neoplasia/diagnóstico , Radiocirurgia , Feminino , Seguimentos , Humanos , Masculino , Pessoa de Meia-Idade , Nomogramas , Estudos Retrospectivos , Fatores de Risco , Análise de Sobrevida
6.
Radiat Res ; 187(5): 599-611, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28398880

RESUMO

Fractionated whole-brain irradiation (fWBI) is a mainstay of treatment for patients with intracranial neoplasia; however late-delayed radiation-induced normal tissue injury remains a major adverse consequence of treatment, with deleterious effects on quality of life for affected patients. We hypothesize that cerebrovascular injury and remodeling after fWBI results in ischemic injury to dependent white matter, which contributes to the observed cognitive dysfunction. To evaluate molecular effectors of radiation-induced brain injury (RIBI), real-time quantitative polymerase chain reaction (RT-qPCR) was performed on the dorsolateral prefrontal cortex (DLPFC, Brodmann area 46), hippocampus and temporal white matter of 4 male Rhesus macaques (age 6-11 years), which had received 40 Gray (Gy) fWBI (8 fractions of 5 Gy each, twice per week), and 3 control comparators. All fWBI animals developed neurologic impairment; humane euthanasia was elected at a median of 6 months. Radiation-induced brain injury was confirmed histopathologically in all animals, characterized by white matter degeneration and necrosis, and multifocal cerebrovascular injury consisting of perivascular edema, abnormal angiogenesis and perivascular extracellular matrix deposition. Herein we demonstrate that RIBI is associated with white matter-specific up-regulation of hypoxia-associated lactate dehydrogenase A (LDHA) and that increased gene expression of fibronectin 1 (FN1), SERPINE1 and matrix metalloprotease 2 (MMP2) may contribute to cerebrovascular remodeling in late-delayed RIBI. Additionally, vascular stability and maturation associated tumor necrosis super family member 15 (TNFSF15) and vascular endothelial growth factor beta (VEGFB) mRNAs were increased within temporal white matter. We also demonstrate that radiation-induced brain injury is associated with decreases in white matter-specific expression of neurotransmitter receptors SYP, GRIN2A and GRIA4. We additionally provide evidence that macrophage/microglial mediated neuroinflammation may contribute to RIBI through increased gene expression of the macrophage chemoattractant CCL2 and macrophage/microglia associated CD68. Global patterns in cerebral gene expression varied significantly between regions examined (P < 0.0001, Friedman's test), with effects most prominent within cerebral white matter.


Assuntos
Lesões Encefálicas/fisiopatologia , Transtornos Cerebrovasculares/etiologia , Transtornos Cerebrovasculares/fisiopatologia , Irradiação Craniana/efeitos adversos , Epilepsia/fisiopatologia , Lesões por Radiação/fisiopatologia , Animais , Lesões Encefálicas/etiologia , Lesões Encefálicas/patologia , Transtornos Cerebrovasculares/patologia , Epilepsia/etiologia , Epilepsia/patologia , Humanos , Macaca mulatta , Masculino , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/efeitos da radiação , Lesões por Radiação/etiologia , Lesões por Radiação/patologia , Dosagem Radioterapêutica , Substância Branca/patologia , Substância Branca/fisiopatologia , Substância Branca/efeitos da radiação
7.
J Radiosurg SBRT ; 5(1): 35-42, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29296461

RESUMO

OBJECTIVES: Recent trials have shown that whole brain radiotherapy (WBRT) can worsen performance status, particularly in the geriatric population. We reviewed our institutional experience with geriatric patients (> 70 years) with brain metastases treated with radiosurgery (SRS) to determine clinical and quality of life (QOL) outcomes. METHODS: Between 7/2000 and 1/2013, a retrospective review was performed on 467 patients treated with SRS (114 geriatric patients). Overall survival (OS), cause of death, and WBRT were evaluated. A retrospective review of geriatric patients was performed with assessments of Karnofsky performance score (KPS, N=69), mini-mental status examinations (MMSE, N=39), and Spitzer QOL (SQOL, N=39) at initial interview, 6, and 12 months after SRS. Repeated Measures ANOVA was used to evaluate differences in quality of life values. Kaplan-Meier analysis estimated survival and time to WBRT. RESULTS: Geriatric patients had a shorter OS compared to non-geriatric patients (p<0.035). Fewer patients in the geriatric cohort received whole brain (p<0.001) or subsequent Gamma Knife stereotactic radiosurgery (GKRS) (p<0.025). No difference was seen in neurologic death rates (p<0.4). In geriatric patients, SQOL declined from 0 to 6 months (mean 6.5 to 5.9, respectively, p<0.02) and 0 to 12 months (mean 6.5 and 5.6, respectively, p<0.03). KPS and MMSE scores did not change over time. Grade 3 or 4 toxicity was 9% in geriatric patients. There was no grade 5 toxicity. CONCLUSION: Geriatric patients tolerate GKRS without a significant decline in KPS or MMSE and with acceptable toxicity profile. SRS also spares a significant proportion of geriatric patients from WBRT, and its associated toxicities.

8.
Radiat Res ; 186(5): 447-454, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27740889

RESUMO

In this study, the effects of a potentially lethal radiation exposure on the brain for long-term cognitive sequelae were investigated using Rhesus macaques ( Macaca mulatta ) adopted from other facilities after analysis of acute radiation response via the Centers for Medical Countermeasures against Radiation (CMCR) network. Fifty-nine animals were given the opportunity to participate in cognitive cage-side testing. The animals that received single-dose gamma irradiation were significantly less likely to engage in cognitive testing than the controls, suggesting that irradiated animals may have differences in cognitive ability. Five irradiated (6.75-8.05 Gy) and three naïve control animals self-selected, were extensively trained and administered a simple visual discrimination with reversal (SVD+R) task 2-3 times per week for 11-18 months. Each session consisted of 30 trials in which the animals were required to choose the correct visual stimulus for a food reward. After the initial presentation, the stimulus that signaled the presence of food was twice reversed once the animal reached criterion (90% accuracy across four consecutive sessions). While the limited sample size precluded definitive statistical analysis, irradiated animals took longer to reach the criterion subsequent to reversal than did control animals, suggesting a relative deficiency in cognitive flexibility. These results provide preliminary data supporting the potential use of a nonhuman primate model to study radiation-induced, late-delayed cognitive deficits.


Assuntos
Encéfalo/fisiologia , Encéfalo/efeitos da radiação , Cognição/efeitos da radiação , Raios gama/efeitos adversos , Animais , Discriminação Psicológica/efeitos da radiação , Feminino , Macaca mulatta , Masculino
9.
Radiat Res ; 183(3): 367-74, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25688996

RESUMO

Fractionated whole-brain irradiation (fWBI), used to treat brain metastases, often leads to neurologic injury and cognitive impairment. The cognitive effects of irradiation in nonhuman primates (NHP) have been previously published; this report focuses on corresponding neuropathologic changes that could have served as the basis for those effects in the same study. Four rhesus monkeys were exposed to 40 Gy of fWBI [5 Gy × 8 fraction (fx), 2 fx/week for four weeks] and received anatomical MRI prior to, and 14 months after fWBI. Neurologic and histologic sequelae were studied posthumously. Three of the NHPs underwent cognitive assessments, and each exhibited radiation-induced impairment associated with various degrees of vascular and inflammatory neuropathology. Two NHPs had severe multifocal necrosis of the forebrain, midbrain and brainstem. Histologic and MRI findings were in agreement, and the severity of cognitive decrement previously reported corresponded to the degree of observed pathology in two of the animals. In response to fWBI, the NHPs showed pathology similar to humans exposed to radiation and show comparable cognitive decline. These results provide a basis for implementing NHPs to examine and treat adverse cognitive and neurophysiologic sequelae of radiation exposure in humans.


Assuntos
Neoplasias Encefálicas/radioterapia , Encéfalo/patologia , Transtornos Cognitivos/fisiopatologia , Macaca mulatta , Animais , Encéfalo/diagnóstico por imagem , Encéfalo/efeitos da radiação , Neoplasias Encefálicas/patologia , Transtornos Cognitivos/diagnóstico por imagem , Fracionamento da Dose de Radiação , Humanos , Radiografia , Irradiação Corporal Total
10.
J Neurooncol ; 119(2): 429-35, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24990827

RESUMO

We investigate the differences in molecular signature and clinical outcomes between multiple lesion glioblastoma (GBM) and single focus GBM in the modern treatment era. Between August 2000 and May 2010, 161 patients with GBM were treated with modern radiotherapy techniques. Of this group, 33 were considered to have multiple lesion GBM (25 multifocal and 8 multicentric). Patterns of failure, time to progression and overall survival were compared based on whether the tumor was considered a single focus or multiple lesion GBM. Genomic groupings and methylation status were also investigated as a possible predictor of multifocality in a cohort of 41 patients with available tissue for analysis. There was no statistically significant difference in overall survival (p < 0.3) between the multiple lesion tumors (8.2 months) and single focus GBM (11 months). Progression free survival was superior in the single focus tumors (7.1 months) as compared to multi-focal (5.6 months, p = 0.02). For patients with single focus, multifocal and multicentric GBM, 81, 76 and 88 % of treatment failures occurred in the 60 Gy volume (p < 0.5), while 54, 72, and 38 % of treatment failures occurred in the 46 Gy volume (p < 0.4). Out of field failures were rare in both single focus and multiple foci GBM (7 vs 3 %). Genomic groupings and methylation status were not found to predict for multifocality. Patterns of failure, survival and genomic signatures for multiple lesion GBM do not appreciably differ when compared to single focus tumors.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/radioterapia , Glioblastoma/genética , Glioblastoma/radioterapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/epidemiologia , Neoplasias Encefálicas/patologia , Estudos de Coortes , Metilação de DNA , Intervalo Livre de Doença , Feminino , Glioblastoma/epidemiologia , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Prevalência , Tomografia Computadorizada por Raios X , Adulto Jovem
11.
Int J Radiat Biol ; 90(9): 799-806, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24991879

RESUMO

PURPOSE: To assess the long-term effects of fractionated whole brain irradiation (fWBI) using diffusion tensor imaging (DTI) and behavior in a pediatric rodent model for the clinical presentation of adult pediatric cancer survivors. MATERIALS AND METHODS: Five-week-old, male F344xBN rats were randomized to receive 0, 5, or 6.5 Gy fractions biweekly for 3 weeks, resulting in Sham, Irradiated-30 (IR-30) and IR-39 Gy total dose groups. Magnetic Resonance Imaging occurred at 1, 3, 6 and 9 months with behavioral assessment at 10-11 months post-fWBI. RESULTS: Irradiation reduced brain size (p < 0.001) and body weight (p < 0.001) proportionate to dose. At 1 month post-fWBI and throughout follow-up, diffusion was reduced in IR-30 and IR-39 relative to shams (p < 0.001). IR-30 but not IR-39 rats were impaired relative to Shams on the reversal trial of the Morris Water Maze (p < 0.05), and IR-30 rats preferred a striatum- mediated strategy (p < 0.06). CONCLUSIONS: Hippocampal performance was impaired in IR-30 but not IR-39 animals. While gross size differences exist, white matter integrity is preserved in rats after fWBI at 5 weeks. This significant departure from childhood cancer survivors and single fraction rodent studies where white matter degradation is a prominent feature are discussed.


Assuntos
Encéfalo/efeitos da radiação , Cognição/efeitos da radiação , Imagem de Tensor de Difusão , Fracionamento da Dose de Radiação , Radioterapia/métodos , Animais , Comportamento Animal/efeitos da radiação , Neoplasias Encefálicas/radioterapia , Hipocampo/efeitos da radiação , Imageamento por Ressonância Magnética , Masculino , Aprendizagem em Labirinto , Modelos Animais , Distribuição Aleatória , Ratos , Ratos Endogâmicos F344
12.
Pract Radiat Oncol ; 4(2): 130-135, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24890354

RESUMO

PURPOSE: Radiation-induced taste and smell disturbances are prevalent in patients receiving brain radiation therapy, although the mechanisms underlying these toxicities are poorly understood. We report the results of a single institution prospective clinical trial aimed at correlating self-reported taste and smell disturbances with radiation dose delivered to defined areas within the brain and nasopharynx. METHODS AND MATERIALS: Twenty-two patients with gliomas were enrolled on a prospective observational trial in which patients underwent a validated questionnaire assessing taste and smell disturbances at baseline and at 3 and 6 weeks after commencement of brain radiation therapy. Fourteen patients with glioblastoma, 3 patients with grade 3 gliomas, and 5 patients with low grade gliomas participated. Median dose to tumor volume was 60 Gy (range, 45-60 Gy). Dose-volume histogram (DVH) analysis was performed for specific regions of interest that were considered potential targets of radiation damage, including the thalamus, temporal lobes, nasopharynx, olfactory groove, frontal pole, and periventricular stem cell niche. The %v10 (percent of region of interest receiving 10 Gy), %v40, and %v60 were calculated for each structure. Data from questionnaires and DVH were analyzed using stepwise regression. RESULTS: Twenty of 22 patients submitted evaluable questionnaires that encompassed at least the entire radiation therapy course. Ten of 20 patients reported experiencing some degree of smell disturbance during radiation therapy, and 14 of 20 patients experienced taste disturbances. Patients reporting more severe taste toxicity also reported more severe toxicities with sense of smell (r(2) = 0.60, P < .006). Tumor location in the temporal lobe predicted for increased severity of taste toxicity (F3, 16 = 1.44, P < .06). The nasopharynx was the only structure in which the DVH data predicted the presence of radiation-induced taste changes (r(2) = 0.28, P < .02). CONCLUSIONS: Radiation-induced taste toxicity appears to be more common in temporal lobe tumors, and may be related to the dose received by the nasopharynx.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioma/radioterapia , Lesões por Radiação/etiologia , Olfato/efeitos da radiação , Paladar/efeitos da radiação , Adulto , Idoso , Encéfalo/efeitos da radiação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Dosagem Radioterapêutica , Inquéritos e Questionários , Adulto Jovem
13.
Neuro Oncol ; 16(9): 1283-8, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24558022

RESUMO

BACKGROUND: We review our single institution experience to determine predictive factors for early and delayed distant brain failure (DBF) after radiosurgery without whole brain radiotherapy (WBRT) for brain metastases. MATERIALS AND METHODS: Between January 2000 and December 2010, a total of 464 patients were treated with Gamma Knife stereotactic radiosurgery (SRS) without WBRT for primary management of newly diagnosed brain metastases. Histology, systemic disease, RPA class, and number of metastases were evaluated as possible predictors of DBF rate. DBF rates were determined by serial MRI. Kaplan-Meier method was used to estimate rate of DBF. Multivariate analysis was performed using Cox Proportional Hazard regression. RESULTS: Median number of lesions treated was 1 (range 1-13). Median time to DBF was 4.9 months. Twenty-seven percent of patients ultimately required WBRT with median time to WBRT of 5.6 months. Progressive systemic disease (χ(2)= 16.748, P < .001), number of metastases at SRS (χ(2) = 27.216, P < .001), discovery of new metastases at time of SRS (χ(2) = 9.197, P < .01), and histology (χ(2) = 12.819, P < .07) were factors that predicted for earlier time to distant failure. High risk histologic subtypes (melanoma, her2 negative breast, χ(2) = 11.020, P < .001) and low risk subtypes (her2 + breast, χ(2) = 11.343, P < .001) were identified. Progressive systemic disease (χ(2) = 9.549, P < .01), number of brain metastases (χ(2) = 16.953, P < .001), minimum SRS dose (χ(2) = 21.609, P < .001), and widespread metastatic disease (χ(2) = 29.396, P < .001) were predictive of shorter time to WBRT. CONCLUSION: Systemic disease, number of metastases, and histology are factors that predict distant failure rate after primary radiosurgical management of brain metastases.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Nomogramas , Radiocirurgia , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/secundário , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento
14.
Radiat Res ; 181(1): 33-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24397438

RESUMO

We hypothesized that dietary administration of the peroxisomal proliferator-activated receptor α agonist, fenofibrate, to young adult male rats would prevent the fractionated whole-brain irradiation (fWBI)-induced reduction in cognitive function and neurogenesis and prevent the fWBI-induced increase in the total number of activated microglia. Eighty 12-14-week-old young adult male Fischer 344 × Brown Norway rats received either: (1) sham irradiation, (2) 40 Gy of fWBI delivered as two 5 Gy fractions/week for 4 weeks, (3) sham irradiation + dietary fenofibrate (0.2% w/w) starting 7 days prior to irradiation, or (4) fWBI + fenofibrate. Cognitive function was measured 26-29 weeks after irradiation using: (1) the perirhinal cortex (PRh)-dependent novel object recognition task; (2) the hippocampal-dependent standard Morris water maze (MWM) task; (3) the hippocampal-dependent delayed match-to-place version of the MWM task; and (4) a cue strategy preference version of the MWM to distinguish hippocampal from striatal task performance. Neurogenesis was assessed 29 weeks after fWBI in the granular cell layer and subgranular zone of the dentate gyrus using a doublecortin antibody. Microglial activation was assessed using an ED1 antibody in the dentate gyrus and hilus of the hippocampus. A significant impairment in perirhinal cortex-dependent cognitive function was measured after fWBI. In contrast, fWBI failed to alter hippocampal-dependent cognitive function, despite a significant reduction in hippocampal neurogenesis. Continuous administration of fenofibrate prevented the fWBI-induced reduction in perirhinal cortex-dependent cognitive function, but did not prevent the radiation-induced reduction in neurogenesis or the radiation-induced increase in activated microglia. These data suggest that fenofibrate may be a promising therapeutic for the prevention of some modalities of radiation-induced cognitive impairment in brain cancer patients.


Assuntos
Cognição/efeitos dos fármacos , Cognição/efeitos da radiação , Fenofibrato/farmacologia , PPAR alfa/agonistas , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/efeitos da radiação , Peso Corporal/efeitos dos fármacos , Peso Corporal/efeitos da radiação , Proteína Duplacortina , Masculino , Atividade Motora/efeitos dos fármacos , Atividade Motora/efeitos da radiação , Ratos , Acuidade Visual/efeitos dos fármacos , Acuidade Visual/efeitos da radiação
15.
Am J Clin Oncol ; 37(2): 177-81, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23211224

RESUMO

OBJECTIVE: We investigate the patterns of failure in the treatment of glioblastoma (GBM) based on clinical target volume (CTV) margin size, dose delivered to the site of initial failure, and the use of temozolomide and intensity-modulated radiotherapy (IMRT). METHODS: Between August 2000 and May 2010, 161 patients with GBM were treated with radiotherapy with or without concurrent temozolomide. Patients were treated with CTV expansions that ranged from 5 to 20 mm using a shrinking field technique. Patterns of failure and time to progression and overall survival were compared based on CTV margin, use of temozolomide, and use of IMRT. Kaplan Meier analysis was used to estimate survival times, and χ test was used for comparison of cohorts. RESULTS: For patients treated with 5-, 10-, and 15- to 20-mm CTV, 79%, 77%, and 86% experienced failures in the 60 Gy volume, respectively. Forty-eight percent, 55%, and 66% of patients with 5-, 10-, and 15- to 20-mm CTV experienced failures in the 46 Gy volume, respectively. There was no statistical difference between patients treated with 5-, 10-, 15- to 20-mm margins with regard to 60 Gy failure (P=0.76), 46 Gy failure (P=0.51), or marginal failure (P=0.73). Eighty percent of patients receiving temozolomide experienced failures in the 60 Gy volume. There was no increased likelihood of marginal failures in patients receiving IMRT (P=0.97). CONCLUSIONS: Modern treatment techniques including use of concurrent temozolmide, limited CTV margin size, and IMRT have not greatly changed the patterns of failure of GBM.


Assuntos
Neoplasias Encefálicas/radioterapia , Glioblastoma/radioterapia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Relação Dose-Resposta à Radiação , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/mortalidade , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Pessoa de Meia-Idade , Radioterapia de Intensidade Modulada/métodos , Temozolomida , Falha de Tratamento , Adulto Jovem
16.
Neurology ; 80(8): 747-53, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23390169

RESUMO

OBJECTIVE: In a retrospective review to assess neuroanatomical targets of radiation-induced cognitive decline, dose volume histogram (DVH) analyses of specific brain regions of interest (ROI) are correlated to neurocognitive performance in 57 primary brain tumor survivors. METHODS: Neurocognitive assessment at baseline included Trail Making Tests A/B, a modified Rey-Osterreith Complex Figure, California or Hopkins Verbal Learning Test, Digit Span, and Controlled Oral Word Association. DVH analysis was performed for multiple neuroanatomical targets considered to be involved in cognition. The %v10 (percent of ROI receiving 10 Gy), %v40, and %v60 were calculated for each ROI. Factor analysis was used to estimate global cognition based on a summary of performance on individual cognitive tests. Stepwise regression was used to determine which dose volume predicted performance on global factors and individual neurocognitive tests for each ROI. RESULTS: Regions that predicted global cognitive outcomes at doses <60 Gy included the corpus callosum, left frontal white matter, right temporal lobe, bilateral hippocampi, subventricular zone, and cerebellum. Regions of adult neurogenesis primarily predicted cognition at %v40 except for the right hippocampus which predicted at %v10. Regions that did not predict global cognitive outcomes at any dose include total brain volume, frontal pole, anterior cingulate, right frontal white matter, and the right precentral gyrus. CONCLUSIONS: Modeling of radiation-induced cognitive decline using neuroanatomical target theory appears to be feasible. A prospective trial is necessary to validate these data.


Assuntos
Encéfalo/efeitos da radiação , Transtornos Cognitivos/etiologia , Lesões por Radiação/complicações , Radioterapia/efeitos adversos , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Transtornos Cognitivos/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Lesões por Radiação/patologia , Análise de Regressão , Sobreviventes
17.
J Med Imaging Radiat Oncol ; 56(5): 554-60, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23043576

RESUMO

INTRODUCTION: The goal of this study was to determine if clinically relevant endpoints were changed by improved MRI resolution during radiosurgical treatment planning. METHODS AND MATERIALS: Between 2003 and 2008, 200 consecutive patients with brain metastases treated with Gamma Knife radiosurgery (GKRS) using either 1.5 T or 3.0 T MRI for radiosurgical treatment planning were retrospectively analysed. The number of previously undetected metastases at time of radiosurgery, distant brain failures, time delay to whole brain radiotherapy (WBRT), overall survival and likelihood of neurological death were determined. RESULTS: Additional metastases were detected in 31.3% and 24.5% of patients at time of radiosurgery with 3.0 T and 1.5 T MRI, respectively (P = 0.27). Patients with multiple metastases at diagnostic scan were more likely to have additional metastases detected by 3.0 T MRI (P < 0.1). Median time to distant brain failure was 4.87 months and 5.43 months for the 3.0 T and 1.5 T cohorts, respectively (P = 0.44). Median time to WBRT was 5.8 months and 5.3 months for the 3.0 T and 1.5 T cohorts, respectively (P = 0.87). Median survival was 6.4 months for the 3.0 T cohort, and 6.1 months for the 1.5 T cohort (P = 0.71). Likelihood of neurological death was 25.3% and 16.7% for the 3.0 and 1.5 T populations, respectively (P = 0.26). CONCLUSIONS: The 3.0 T MRI-based treatment planning for GKRS did not appear to affect the likelihood of distant brain failure, the need for WBRT or the likelihood of neurological death in this series.


Assuntos
Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/estatística & dados numéricos , Radiocirurgia/mortalidade , Planejamento da Radioterapia Assistida por Computador/estatística & dados numéricos , Radioterapia Guiada por Imagem/mortalidade , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/mortalidade , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prevalência , Planejamento da Radioterapia Assistida por Computador/métodos , Análise de Sobrevida , Taxa de Sobrevida , Resultado do Tratamento , Adulto Jovem
18.
Front Oncol ; 2: 73, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22833841

RESUMO

Approximately 100,000 primary and metastatic brain tumor patients/year in the US survive long enough (>6 months) to experience radiation-induced brain injury. Prior to 1970, the human brain was thought to be highly radioresistant; the acute CNS syndrome occurs after single doses >30 Gy; white matter necrosis occurs at fractionated doses >60 Gy. Although white matter necrosis is uncommon with modern techniques, functional deficits, including progressive impairments in memory, attention, and executive function have become important, because they have profound effects on quality of life. Preclinical studies have provided valuable insights into the pathogenesis of radiation-induced cognitive impairment. Given its central role in memory and neurogenesis, the majority of these studies have focused on the hippocampus. Irradiating pediatric and young adult rodent brains leads to several hippocampal changes including neuroinflammation and a marked reduction in neurogenesis. These data have been interpreted to suggest that shielding the hippocampus will prevent clinical radiation-induced cognitive impairment. However, this interpretation may be overly simplistic. Studies using older rodents, that more closely match the adult human brain tumor population, indicate that, unlike pediatric and young adult rats, older rats fail to show a radiation-induced decrease in neurogenesis or a loss of mature neurons. Nevertheless, older rats still exhibit cognitive impairment. This occurs in the absence of demyelination and/or white matter necrosis similar to what is observed clinically, suggesting that more subtle molecular, cellular and/or microanatomic modifications are involved in this radiation-induced brain injury. Given that radiation-induced cognitive impairment likely reflects damage to both hippocampal- and non-hippocampal-dependent domains, there is a critical need to investigate the microanatomic and functional effects of radiation in various brain regions as well as their integration at clinically relevant doses and schedules. Recently developed techniques in neuroscience and neuroimaging provide not only an opportunity to accomplish this, but they also offer the opportunity to identify new biomarkers and new targets for interventions to prevent or ameliorate these late effects.

19.
Radiat Res ; 177(4): 449-66, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22348250

RESUMO

Technological developments in radiation therapy and other cancer therapies have led to a progressive increase in five-year survival rates over the last few decades. Although acute effects have been largely minimized by both technical advances and medical interventions, late effects remain a concern. Indeed, the need to identify those individuals who will develop radiation-induced late effects, and to develop interventions to prevent or ameliorate these late effects is a critical area of radiobiology research. In the last two decades, preclinical studies have clearly established that late radiation injury can be prevented/ameliorated by pharmacological therapies aimed at modulating the cascade of events leading to the clinical expression of radiation-induced late effects. These insights have been accompanied by significant technological advances in imaging that are moving radiation oncology and normal tissue radiobiology from disciplines driven by anatomy and macrostructure to ones in which important quantitative functional, microstructural, and metabolic data can be noninvasively and serially determined. In the current article, we review use of positron emission tomography (PET), single photon emission tomography (SPECT), magnetic resonance (MR) imaging and MR spectroscopy to generate pathophysiological and functional data in the central nervous system, lung, and heart that offer the promise of, (1) identifying individuals who are at risk of developing radiation-induced late effects, and (2) monitoring the efficacy of interventions to prevent/ameliorate them.


Assuntos
Diagnóstico por Imagem/métodos , Lesões por Radiação/diagnóstico , Animais , Transtornos Cognitivos/diagnóstico , Transtornos Cognitivos/etiologia , Irradiação Craniana/efeitos adversos , Imagem de Tensor de Difusão/métodos , Traumatismos Cardíacos/diagnóstico , Traumatismos Cardíacos/etiologia , Traumatismos Cardíacos/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Neuroimagem/métodos , Imagem de Perfusão/métodos , Tomografia por Emissão de Pósitrons/métodos , Medicina de Precisão , Lesões por Radiação/diagnóstico por imagem , Lesões por Radiação/patologia , Lesões Experimentais por Radiação/diagnóstico , Lesões Experimentais por Radiação/diagnóstico por imagem , Lesões Experimentais por Radiação/patologia , Pneumonite por Radiação/diagnóstico , Pneumonite por Radiação/diagnóstico por imagem , Pneumonite por Radiação/etiologia , Tolerância a Radiação , Radiografia , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Doenças Vasculares/etiologia , Doenças Vasculares/patologia
20.
J Caffeine Res ; 2(1): 15-22, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24761265

RESUMO

BACKGROUND: Caffeine is a known vasoconstrictor that reduces resting cerebral blood flow (CBF) throughout the brain. This effect may be problematic in functional magnetic resonance imaging (fMRI) research, as the blood oxygen level-dependent (BOLD) signal is a complex interaction of CBF and other factors that are dependent on changes in neural activity. It is unknown whether changes in the BOLD signal during an fMRI experiment could be affected by subjects' recent use or abstinence from dietary caffeine. METHODS: Here, we report two similar studies (n=45 and 17) that measure the effects of caffeine on BOLD activation, BOLD time course parameters, and CBF. Using a factorial design, low, moderate, and high caffeine consumers received either caffeine (250 mg) or placebo during normal caffeine use (satiated state) or after 30 hours of abstention (abstinent state). The fMRI of a reaction time task and resting-state CBF were collected. RESULTS: In general, acute caffeine administration reduced the time to peak and full width at half maximum of the BOLD time course, and CBF across both studies. Caffeine also produced a small reduction in BOLD activation. The majority of these reductions across measures were moderated by neither the level of caffeine use, nor the abstinent or satiated state. CONCLUSIONS: These results suggest that dietary caffeine use does not produce a significant effect on task-related BOLD activation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...