Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 4250, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35277561

RESUMO

High electrical and thermal conductive metals (HETCM) play a key role in smart electronics, green energy, modern communications and healthcare, however, typical HETCM (e.g., Ag, Au, Cu) usually have relatively low mechanical strength, hindering further applications. Selective laser melting (SLM) is a potentially transformative manufacturing technology that is expected to address the issue. Ag is the metal with the highest thermal conductivity, which induces microscale grain refinement, but also leads to high internal stresses by SLM. Here, we select Ag7.5Cu alloy as an example to demonstrate that multi-scale (micro/meso/macro) synergies can take advantage of high thermal conductivity and internal stresses to effectively strengthen Ag alloy. The mimicry of metal-hardened structures (e.g., large-angle boundary) is extended to the mesoscale by controlling the laser energy density and laser scanning strategy to manipulate the macroscale internal stress intensity and mesoscale internal stress direction, respectively, to form mesoscale large-angle "grains", resulting in multiple mutual perpendicular shear bands during fracture. The presented approach achieved a significant enhancement of yield strength (+ 145%) and ductility (+ 28%) without post-treatment. The results not only break the strength-ductility trade-off of conventional SLM alloys, but also demonstrate a multi-scale synergistic enhancement strategy that exploits high thermal conductivity and internal stresses.

2.
ACS Appl Mater Interfaces ; 12(29): 33210-33218, 2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32580542

RESUMO

Remotely addressable actuators are of great interest in fields like microrobotics and smart textiles because of their simplicity, integrity, flexibility, and lightweight. However, most of the existing actuator systems are composed of complex assemblies and/or offer a low response rate. Here, the actuation performance of a light-driven, highly oriented film based on ultra-high molecular weight polyethylene (UHMW-PE), containing a photo-responsive additive, 2-(2H-benzotriazol-2-yl)-4,6-ditertpentylphenol (BZT), is reported. The material exhibits a fast (<1 s) and reversible photo-induced thermal response upon exposure to UV light, which results in an exceptionally high actuation stress (∼70 MPa) at a low strain (<0.1%). The proposed actuation mechanism originates from light absorption by BZT and energy transfer into heat, in combination with the intrinsic high stiffness (∼80 GPa) and a negative thermal expansion (NTE) of the oriented polymer films. This unique set of properties of this actuator, in particular the very high specific actuation stress, compared to existing organic and inorganic actuators, and the remote optical actuation, promises impact in fields related to soft robotics, composites, medical devices, optics, prosthetics, and smart textiles.

3.
Molecules ; 24(11)2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31163705

RESUMO

Different techniques of grafting polymer chains to filler surfaces are often employed to compatibilise filler and polymer matrices. In this paper the influence of graft length and graft density on the state of dispersion, crystallisation and rheological properties of poly(ε-caprolactone) (PCL)/silica (SiO2) nanocomposites are reported. Grafted silica nanoparticles were prepared through polymerisation of PCL from the nanoparticle surface. Graft length was controlled by the reaction time, while the grafting density was controlled by the monomer-to-initiator ratio. Grafted nanoparticles were mixed with PCL of different molecular weights and the state of dispersion was assessed. Different matrix-to-graft molecular weight ratios resulted in different states of dispersion. Composites based on the higher molecular weight matrix exhibited small spherical agglomerates while the lower molecular weight matrix revealed more sheet-like microstructures. The state of dispersion was found to be relatively independent of graft length and density. Under quiescent conditions the grafts showed increased nucleation ability in the higher molecular weight PCL, while in the lower molecular weight matrix the effect was less pronounced. Rheological experiments showed an increase in viscosity with increased filler content, which was beneficial for the formation of oriented structures in shear-induced crystallisation.


Assuntos
Nanocompostos/química , Poliésteres/química , Reologia , Dióxido de Silício/química , Varredura Diferencial de Calorimetria , Cristalização , Módulo de Elasticidade , Microscopia , Nanocompostos/ultraestrutura , Termogravimetria , Viscosidade
4.
Biomacromolecules ; 20(4): 1765-1776, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30844253

RESUMO

In this study, a tissue-engineered trachea, consisting of multilevel structural electrospun polylactide (PLA) membranes enveloping 3D-printed thermoplastic polyurethane (TPU) skeletons, was developed to create a mechanically robust, antibacterial and bioresorbable graft for the tracheal reconstruction. The study design incorporated two distinct uses of stereocomplex PLA: patterned electrospun fibers to enhance tissue integration compared to the random layered fibers, meanwhile possessing good antibacterial property; and 3D-printed TPU scaffold with elasticity to provide external support and protection. Herein, ionic liquid (IL)-functioned graphene oxide (GO) was synthesized and presented enhanced mechanical and hydrophilicity properties. More interesting, antibacterial activity of the GO- g-IL modified PLA membranes were proved by Escherichia coli and Staphylococcus aureus, showing superior antibacterial effect compared to single GO or IL. The synergistic antibacterial effect could be related to that GO break cytomembrane of bacteria by its extremely sharp edges, while IL works by electrostatic interaction between its cationic structures and electronegative phosphate groups of bacteria membranes, leading to the loss of cell electrolyte and cell death. Hence, after L929 fibroblast cells were seeded on patterned fibrous membranes with phenotypic shape, further effective cell infiltration, cell proliferation and attachment were observed. In addition, the tissue-engineered trachea scaffolds were implanted into rabbit models. The in vivo result confirmed that the scaffolds with patterned membranes manifested favorable biocompatibility and promoted tissue regeneration.


Assuntos
Escherichia coli/crescimento & desenvolvimento , Grafite , Teste de Materiais , Poliésteres , Impressão Tridimensional , Staphylococcus aureus/crescimento & desenvolvimento , Alicerces Teciduais/química , Traqueia/metabolismo , Animais , Linhagem Celular , Elasticidade , Fibroblastos/metabolismo , Grafite/química , Grafite/farmacologia , Camundongos , Poliésteres/química , Poliésteres/farmacologia , Coelhos , Traqueia/patologia , Traqueia/cirurgia
5.
Int J Nanomedicine ; 13: 5701-5718, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30288042

RESUMO

BACKGROUND: Poly(trimethylene carbonate) (PTMC) has wide biomedical applications in the field of tissue engineering, due to its biocompatibility and biodegradability features. Its common manufacturing involves photofabrication, such as stereolithography (SLA), which allows the fabrication of complex and controlled structures. Despite the great potential of SLA-fabricated scaffolds, very few examples of PTMC-based drug delivery systems fabricated using photo-fabrication can be found ascribed to light-triggered therapeutics instability, degradation, side reaction, binding to the macromers, etc. These concerns severely restrict the development of SLA-fabricated PTMC structures for drug delivery purposes. METHODS: In this context, we propose here, as a proof of concept, to load a drug model (dexamethasone) into electrospun fibers of poly(lactic acid), and then to integrate these bioactive fibers into the photo-crosslinkable resin of PTMC to produce hybrid films. The hybrid films' properties and drug release profile were characterized; its biological activity was investigated via bone marrow mesenchymal stem cells culture and differentiation assays. RESULTS: The polymer/polymer hybrids exhibit improved properties compared with PTMC-only films, in terms of mechanical performance and drug protection from UV denaturation. We further validated that the dexamethasone preserved its biological activity even after photoreaction within the PTMC/poly(lactic acid) hybrid structures by investigating bone marrow mesenchymal stem cells proliferation and osteogenic differentiation. CONCLUSION: This study demonstrates the potential of polymer-polymer scaffolds to simultaneously reinforce the mechanical properties of soft matrices and to load sensitive drugs in scaffolds that can be fabricated via additive manufacturing.


Assuntos
Dioxanos/química , Sistemas de Liberação de Medicamentos , Nanocompostos/química , Osteogênese , Poliésteres/química , Polímeros/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dexametasona/farmacologia , Liberação Controlada de Fármacos , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanofibras/química , Nanofibras/ultraestrutura , Engenharia Tecidual , Alicerces Teciduais/química
6.
ACS Nano ; 12(9): 9040-9050, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30179514

RESUMO

The intrinsic properties of nanomaterials offer promise for technological revolutions in many fields, including transportation, soft robotics, and energy. Unfortunately, the exploitation of such properties in polymer nanocomposites is extremely challenging due to the lack of viable dispersion routes when the filler content is high. We usually face a dichotomy between the degree of nanofiller loading and the degree of dispersion (and, thus, performance) because dispersion quality decreases with loading. Here, we demonstrate a potentially scalable pressing-and-folding method (P & F), inspired by the art of croissant-making, to efficiently disperse ultrahigh loadings of nanofillers in polymer matrices. A desired nanofiller dispersion can be achieved simply by selecting a sufficient number of P & F cycles. Because of the fine microstructural control enabled by P & F, mechanical reinforcements close to the theoretical maximum and independent of nanofiller loading (up to 74 vol %) were obtained. We propose a universal model for the P & F dispersion process that is parametrized on an experimentally quantifiable " D factor". The model represents a general guideline for the optimization of nanocomposites with enhanced functionalities including sensing, heat management, and energy storage.

7.
J Biomed Mater Res B Appl Biomater ; 106(1): 163-171, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27910198

RESUMO

We have shown previously that PMMA-acrylate photopolymers are biocomopatible and can exhibit improved cell adhesion compared to PMMA, due to an increase in negative surface charge caused by UV radiation PLGA has been used widely in soft tissue regeneration due to its high biocompatibility and cell adhesion. This polymer is also biodegradable and can be utilised in the field of vascular regeneration. In this study, PLGA is blended with a triacrylate monomer (TPETA) to create a degradable photopolymer blend. Surface relief structures are formed on this PLGA-TPETA by photoembossing. An optimum height of 950 nm was achieved for a 10 µm pitch with the height of these relief structures being controlled by changing UV intensity, processing temperature and time. Degradation studies of this blend revealed a bulk degradation mechanism with PLGA-TPETA degrading slower compared to pure PLGA. We also evaluated the adhesion of human umbilical vein endothelial cells (HUVECs) on both smooth and textured PLGA-TPETA films. Embossed PLGA-TPETA films showed improved cell adhesion compared to smooth substrates. Furthermore, HUVECs proliferated faster on the embossed surface compared to their smooth counterparts. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 163-171, 2018.


Assuntos
Acrilatos , Peptídeos Catiônicos Antimicrobianos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Teste de Materiais , Membranas Artificiais , Processos Fotoquímicos , Raios Ultravioleta , Acrilatos/química , Acrilatos/farmacologia , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Adesão Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos
8.
ACS Omega ; 3(11): 14933-14941, 2018 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-31458159

RESUMO

A novel "selective surface dissolution" (SSD) method was successfully utilized in previous research to prepare "all-polymer composites" aiming to structural applications. In the current study, this simple, cost-effective, and environmentally friendly method was employed for the first time to synthesize cellulose-derived highly porous three-dimensional (3D) activated carbon materials to assemble superior electrodes for supercapacitors. ZnCl2 aqueous solution was used to partially dissolve the surface of cellulose fibers. The partially dissolved cellulose I crystalline phase at the fiber surface can be consolidated into fibrillar cellulose polymorphs (e.g., cellulose II) which connects remaining fibers together. By a carefully controlled SSD method, a highly porous 3D cellulosic skeleton with interconnected bridge-like fibrillar linkages and hierarchical pore structures can be created. After carbonization, the 3D fiber construct with interconnected fibrillar linkages and hierarchical pore structures remains and highly porous activated carbons were obtained. The effects of various processing parameters (e.g., solvent concentration, immersion time, etc.) on the morphology of the as-formed activated porous carbons and their electrochemical performance as electrodes in supercapacitors were systematically investigated and discussed. It was concluded that the SSD method is a promising chemical approach to produce large-scale cellulose-derived activated porous carbons in an environmentally friendly manner.

9.
Nat Commun ; 8: 14425, 2017 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-28181518

RESUMO

The properties of graphene open new opportunities for the fabrication of composites exhibiting unique structural and functional capabilities. However, to achieve this goal we should build materials with carefully designed architectures. Here, we describe the fabrication of ceramic-graphene composites by combining graphene foams with pre-ceramic polymers and spark plasma sintering. The result is a material containing an interconnected, microscopic network of very thin (20-30 nm), electrically conductive, carbon interfaces. This network generates electrical conductivities up to two orders of magnitude higher than those of other ceramics with similar graphene or carbon nanotube contents and can be used to monitor 'in situ' structural integrity. In addition, it directs crack propagation, promoting stable crack growth and increasing the fracture resistance by an order of magnitude. These results demonstrate that the rational integration of nanomaterials could be a fruitful path towards building composites combining unique mechanical and functional performances.

10.
J Funct Biomater ; 7(4)2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27941669

RESUMO

Failures of vascular grafts are normally caused by the lack of a durable and adherent endothelium covering the graft which leads to thrombus and neointima formation. A promising approach to overcome these issues is to create a functional, quiescent monolayer of endothelial cells on the surface of implants. The present study reports for the first time on the use of photoembossing as a technique to create polymer films with different topographical features for improved cell interaction in biomedical applications. For this, a photopolymer is created by mixing poly(methyl methacrylate) (PMMA) and trimethylolpropane ethoxylate triacrylate (TPETA) at a 1:1 ratio. This photopolymer demonstrated an improvement in biocompatibility over PMMA which is already known to be biocompatible and has been extensively used in the biomedical field. Additionally, photoembossed films showed significantly improved cell attachment and proliferation compared to their non-embossed counterparts. Surface texturing consisted of grooves of different pitches (6, 10, and 20 µm) and heights (1 µm and 2.5 µm). The 20 µm pitch photoembossed films significantly accelerated cell migration in a wound-healing assay, while films with a 6 µm pitch inhibited cells from detaching. Additionally, the relief structure obtained by photoembossing also changed the surface wettability of the substrates. Photoembossed PMMA-TPETA systems benefited from this change as it improved their water contact angle to around 70°, making it well suited for cell adhesion.

11.
ACS Appl Mater Interfaces ; 8(36): 24112-22, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27541488

RESUMO

Any industrial application aiming at exploiting the exceptional properties of graphene in composites or coatings is currently limited by finding viable production methods for large volumes of good quality and high aspect ratio graphene, few layer graphene (FLG) or graphite nanoplatelets (GNP). Final properties of the resulting composites are inherently related to those of the initial graphitic nanoparticles, which typically depend on time-consuming, resource-demanding and/or low yield liquid exfoliation processes. In addition, efficient dispersion of these nanofillers in polymer matrices, and their interaction, is of paramount importance. Here we show that it is possible to produce graphene/epoxy nanocomposites in situ and with high conversion of graphite to FLG/GNP through the process of three-roll milling (TRM), without the need of any additives, solvents, compatibilisers or chemical treatments. This readily scalable production method allows for more than 5 wt % of natural graphite (NG) to be directly exfoliated into FLG/GNP and dispersed in an epoxy resin. The in situ exfoliated graphitic nanoplatelets, with average aspect ratios of 300-1000 and thicknesses of 5-17 nm, were demonstrated to conferee exceptional enhancements in mechanical and electrical properties to the epoxy resin. The above conclusions are discussed and interpreted in terms of simple analytical models.

12.
J Orthop Translat ; 3(2): 78-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30035043

RESUMO

The research project entitled "rapid prototyping of custom-made bone-forming tissue engineering constructs" (RAPIDOS) is one of the three unique projects that are the result of the first coordinated call for research proposals in biomaterials launched by the European Union Commission and the National Natural Science Foundation of China in 2013 for facilitating bilateral translational research. We formed the RAPIDOS European and Chinese consortium with the aim of applying technologies creating custom-made tissue engineered constructs made of resorbable polymer and calcium phosphate ceramic composites specifically designed by integrating the following: (1) imaging and information technologies, (2) biomaterials and process engineering, and (3) biological and biomedical engineering for novel and truly translational bone repair solutions. Advanced solid free form fabrication technologies, precise stereolithography, and low-temperature rapid prototyping provide the necessary control to create innovative high-resolution medical implants. The use of Chinese medicine extracts, such as the bone anabolic factor icaritin, which has been shown to promote osteogenic differentiation of stem cells and enhance bone healing in vivo, is a safe and technologically relevant alternative to the intensely debated growth factors delivery strategies. This unique initiative driven by a global consortium is expected to accelerate scientific progress in the important field of biomaterials and to foster strong scientific cooperation between China and Europe.

13.
J Biomed Mater Res B Appl Biomater ; 102(2): 214-20, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23908051

RESUMO

Photoembossing is a technique used to create relief structures using a patterned contact photo-mask exposure and a thermal development step. Typically, the photopolymer consists of a polymer binder and a monomer in a 1/1 ratio together with a photo-initiator, which results in a solid and non-tacky material at room temperature. Here, new mixtures for photoembossing are presented which are potentially biocompatible. Poly(methyl methacrylate) is used as a polymer binder and two different acrylate monomers trimethylolpropane ethoxylate triacrylate (TPETA) and dipentaerythritol penta-/hexa-acrylate (DPPHA) are tested. PMMA-TPETA had a higher surface relief features. Biocompatibility is evaluated by culturing human umbilical vein endothelial cells (HUVECs) on films of these photopolymer blends. PMMA with TPETA and PMMA-DPPHA films showed enhanced cell adhesion compared to PMMA. The cells also showed alignment on surface textured films with the highest degree of alignment on films with 20 µm pitch and 2 µm height. This study shows that photoembossing is a feasible method to produce surface textures on films that can be adopted in the field of tissue engineering to promote cell adhesion and alignment.


Assuntos
Resinas Acrílicas/química , Células Endoteliais da Veia Umbilical Humana/metabolismo , Teste de Materiais , Membranas Artificiais , Processos Fotoquímicos , Adesão Celular , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Propriedades de Superfície , Engenharia Tecidual/métodos
14.
Beilstein J Nanotechnol ; 4: 325-9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23766957

RESUMO

The effects of the addition of fibres of bacterial cellulose (FBC) to commercial starch of Mater-Bi(®) have been investigated. FBC produced by cultivating Acetobacter xylinum for 21 days in glucose-based medium were purified by sodium hydroxide 2.5 wt % and sodium hypochlorite 2.5 wt % overnight, consecutively. To obtain water-free BC nanofibres, the pellicles were freeze dried at a pressure of 130 mbar at a cooling rate of 10 °C min(-1). Both Mater-Bi and FBC were blended by using a mini twin-screw extruder at 160 °C for 10 min at a rotor speed of 50 rpm. Tensile tests were performed according to ASTM D638 to measure the Young's modulus, tensile strength and elongation at break. A field emission scanning electron microscope was used to observe the morphology at an accelerating voltage of 10 kV. The crystallinity (T c) and melting temperature (T m) were measured by DSC. Results showed a significant improvement in mechanical and thermal properties in accordance with the addition of FBC into Mater-Bi. FBC is easily incorporated in Mater-Bi matrix and produces homogeneous Mater-Bi/FBC composite. The crystallinity of the Mater-Bi/FBC composites decrease in relation to the increase in the volume fraction of FBC.

15.
ACS Appl Mater Interfaces ; 5(15): 7117-21, 2013 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-23802918

RESUMO

A new approach for the production of oriented films and fibers with angular-dependent reflective colors is presented. The process consists of spray coating a solution of cholesteric liquid-crystalline monomers onto a melt-processed and oriented polyamide-6 substrate followed by UV curing. Reflectivity measurements and optical microscopy show that a well-defined liquid-crystalline and planar alignment is obtained. It is further demonstrated that a reflection up to 80% is obtained by coating oriented films on both sides of the oriented substrate with a single-handedness cholesteric liquid-crystal coating. The high reflectivity is attributed to the close to half-wave retardation induced by the anisotropic polymer substrate. Also, polyamide-6 filaments are successfully coated and fibers are obtained with an angular-dependent color in a single dimension along the fiber direction, which originates from the planar cholesteric alignment on a curved surface.

16.
ACS Appl Mater Interfaces ; 5(11): 4945-50, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23639415

RESUMO

A humidity-responsive bilayer actuator has been developed that consists of an oriented polyamide-6 substrate and a liquid-crystalline polymer coating. The oriented substrate acts as an alignment layer for the liquid crystal. The liquid-crystalline polymer consists of a supramolecular network having hydrogen-bonded entities that, after activation with an alkaline solution, exhibit deformation in response to a change in humidity. The bending behavior of the bilayer actuator was analyzed, showing a large response to a change in the humidity.

17.
ACS Appl Mater Interfaces ; 4(5): 2577-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22524442

RESUMO

Engineered fiber reinforced polymer composites require effective impregnation of polymer matrix within the fibers to form coherent interfaces. In this work, we investigated solution interactions with electrospun fiber mats for the manufacture of nanocomposites with optimized mechanical properties. Void free composites of electrospun nonwoven PA6 nanofibers were manufactured using a PVA matrix that is introduced into the nonwoven mat using a solution-based processing method. The highest failure stress of the composites was reported for an optimum 16 wt % of PVA in solution, indicating the removal of voids in the composite as the PVA solution both impregnates the nanofiber network and fills all the pores of the network with PVA matrix upon evaporation of the solvent. These processing methods are effective for achieving coherent nanofiber-matrix interfaces, with further functionality demonstrated for optically transparent electrospun nanofiber composites.

18.
Bioresour Technol ; 102(19): 9105-10, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21835613

RESUMO

Bacterial cellulose (BC) is a natural hydrogel, which is produced by Acetobacter xylinum (recently renamed Gluconacetobacter xylinum) in culture and constitutes of a three-dimensional network of ribbon-shaped bundles of cellulose microfibrils. Here, a two-step purification process is presented that significantly improves the structural, mechanical, thermal and morphological behaviour of BC sheet processed from these hydrogels produced in static culture. Alkalisation of BC using a single-step treatment of 2.5 wt.% NaOH solution produced a twofold increase in Young's modulus of processed BC sheet over untreated BC sheet. Further enhancements are achieved after a second treatment with 2.5 wt.% NaOCl (bleaching). These treatments were carefully designed in order to prevent any polymorphic crystal transformation from cellulose I to cellulose II, which can be detrimental for the mechanical properties. Scanning electron microscopy and thermogravimetric analysis reveals that with increasing chemical treatment, morphological and thermal stability of the processed films are also improved.


Assuntos
Celulose/química , Gluconacetobacter xylinus/química , Hidrogéis/química , Microfibrilas/química , Celulose/isolamento & purificação , Celulose/ultraestrutura , Microscopia Eletrônica de Varredura , Hidróxido de Sódio , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Termogravimetria , Difração de Raios X
19.
ACS Appl Mater Interfaces ; 2(3): 919-26, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20356299

RESUMO

The area of self-reinforced polymer composites is one of the fastest growing areas in engineering polymers, but until now these materials have been mainly developed on the basis of thermoplastic fibers of moderate performance. In this work, we report on a new type of self-reinforced composites based on high-performance aramid fibers to produce an "all-aramid" composite by applying a surface-dissolution method to fuse poly(p-phenylene terephthalamide) (PPTA) fibers together. After immersion in concentrated (95%) sulphuric acid (H(2)SO(4)) for a selected period of time, partially dissolved fiber surfaces were converted into a PPTA interphase or matrix phase. Following extraction of H(2)SO(4) and drying, a consolidated all-aramid composite was formed. The structure, mechanical- and thermal properties of these single-polymer composites were investigated. Optimum processing conditions resulted in unidirectional composites of high reinforcement content (approximately 75 vol %) and good interfacial bonding. The all-aramid composites featured a Young's modulus of approximately 65 GPa at room temperature, and a tensile strength of 1.4 GPa, which are comparable with or exceed the corresponding values of conventional aramid/epoxy composites. However, since fiber, matrix and interphase in all-aramid composites are based on the same high-temperature resistant PPTA polymer, a high modulus of approximately 50 GPa was maintained up to 250 degrees C, demonstrating the potential of these materials for high-temperature applications.

20.
Nanotechnology ; 21(3): 035705, 2010 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-19966404

RESUMO

The elastic moduli of individual electrospun polyethylene oxide fibres were measured using atomic force microscopy based indentation. Heating of the fibres below their melting temperature produced a considerable degradation in mechanical behaviour associated with a loss in the original electrospun polymer structural organization. Indentation of fibres at just below their melting temperature followed by cooling to room temperature resulted in characteristic stepped morphology at the indentation point. This solid state ordering of the polymer at the indentation point showed an improved elastic modulus as compared with the post-thermal treatment behaviour of the fibre away from the indentation point.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...