Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1284478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107002

RESUMO

Sour cherry (Prunus cerasus L.) is an important allotetraploid cherry species that evolved in the Caspian Sea and Black Sea regions from a hybridization of the tetraploid ground cherry (Prunus fruticosa Pall.) and an unreduced pollen of the diploid sweet cherry (P. avium L.) ancestor. Details of when and where the evolution of this species occurred are unclear, as well as the effect of hybridization on the genome structure. To gain insight, the genome of the sour cherry cultivar 'Schattenmorelle' was sequenced using Illumina NovaSeqTM and Oxford Nanopore long-read technologies, resulting in a ~629-Mbp pseudomolecule reference genome. The genome could be separated into two subgenomes, with subgenome PceS_a originating from P. avium and subgenome PceS_f originating from P. fruticosa. The genome also showed size reduction compared to ancestral species and traces of homoeologous sequence exchanges throughout. Comparative analysis confirmed that the genome of sour cherry is segmental allotetraploid and evolved very recently in the past.

2.
ACS Chem Biol ; 18(12): 2450-2456, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37948749

RESUMO

Rieske oxygenases (ROs) from natural product biosynthetic pathways are a poorly studied group of enzymes with significant potential as oxidative functionalization biocatalysts. A study on the ROs JerL, JerP, and AmbP from the biosynthetic pathways of jerangolid A and ambruticin VS-3 is described. Their activity was successfully reconstituted using whole-cell bioconversion systems coexpressing the ROs and their respective natural flavin-dependent reductase (FDR) partners. Feeding authentic biosynthetic intermediates and synthetic surrogates to these strains confirmed the involvement of the ROs in hydroxymethylpyrone and dihydropyran formation and revealed crucial information about the RO's substrate specificity. The pronounced dependence of JerL and JerP on the presence of a methylenolether allowed the precise temporal assignment of RO catalysis to the ultimate steps of jerangolid biosynthesis. JerP and AmbP stand out among the biosynthetic ROs studied so far for their ability to catalyze clean tetrahydropyran desaturation without further functionalizing the formed electron-rich double bonds. This work highlights the remarkable ability of ROs to highly selectively oxidize complex molecular scaffolds.


Assuntos
Oxigenases , Policetídeos , Oxigenases/metabolismo , Antifúngicos , Espécies Reativas de Oxigênio , Catálise , Estresse Oxidativo
3.
Phytopathology ; 113(12): 2222-2229, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37856693

RESUMO

Several fire blight resistance loci in Malus genotypes map on different linkage groups (LGs) representing chromosomes of the domesticated apple. Prior genetics studies primarily focused on F1 populations. A strong resistance quantitative trait locus (QTL) explained up to 66% of phenotypic variance in an F1 progeny derived from crossing the highly resistant wild apple genotype Malus fusca MAL0045 and the highly susceptible apple cultivar 'Idared', which was previously mapped on LG10 (Mfu10) of MAL0045. Strains of the causative bacterial pathogen Erwinia amylovora, notably those that show a single nucleotide polymorphism in the avrRpt2EA effector protein sequence at position 156 (e.g., Ea3049), are more virulent and overcome some known fire blight resistance donors and their QTLs. However, MAL0045 is resistant to Ea3049 and Mfu10 is not overcome, but most of the F1 progeny were highly susceptible to this strain. This phenomenon led to the assumption that other putative resistance factors not segregating in the F1 progeny might be present in the genome of MAL0045. Here, we crossed F1 progeny together to obtain 135 F2 individuals. Facilitated by genotyping-by-sequencing and phenotypic assessments, we identified and mapped two novel resistance QTLs in these F2 individuals on LGs 4 and 15, which were not identified in the F1. To our knowledge, these are the first resistance QTLs mapped in F2 progeny in Malus. In addition, we report that neither MAL0045 nor Mfu10 is broken down by a highly aggressive U.S. strain, LA635, after analyses in the original F1 individuals. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Erwinia amylovora , Malus , Humanos , Locos de Características Quantitativas/genética , Malus/genética , Malus/microbiologia , Doenças das Plantas/microbiologia , Mapeamento Cromossômico , Genótipo , Erwinia amylovora/genética
4.
Mol Breed ; 43(10): 74, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37830083

RESUMO

The apple (Malus x domestica) scab (Venturia inaequalis) resistance genes Rvi4 and Rvi15 were mapped to a similar region on the top of linkage group 2 and both resistance genes elicit the same type of resistance reaction, i.e., a hypersensitive response; hence, it is suspected that the two genes may be the same. As the two resistance genes Rvi4 and Rvi15 are currently used in apple breeding, it is important to clarify whether the two resistance genes are the same or not. Several approaches were used to make this determination. First, the pedigree of the genotype GMAL 2473, the source of Rvi15, was reconstructed. GMAL 2473 was found to be an F1 of 'Russian seedling', the genotype, which is known to also be the source of Rvi4. Next, it was further demonstrated that 'Regia', a cultivar known to carry Rvi4 (and Rvi2), carries the same gene (Vr2-C), which was demonstrated to be the gene inducing Rvi15 resistance. Finally, it was shown that transgenic lines carrying Vr2-C are compatible with race 4 apple scab isolates. Taken all together, these results definitively demonstrate that Rvi4 and Rvi15 are the same resistance gene. For future studies, we suggest referring to this resistance with the first name that was assigned to this gene, namely Rvi4. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-023-01421-0.

5.
Nano Lett ; 23(14): 6330-6336, 2023 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-37440701

RESUMO

Membrane morphology and its dynamic adaptation regulate many cellular functions, which are often mediated by membrane proteins. Advances in DNA nanotechnology have enabled the realization of various protein-inspired structures and functions with precise control at the nanometer level, suggesting a viable tool to artificially engineer membrane morphology. In this work, we demonstrate a DNA origami cross (DOC) structure that can be anchored onto giant unilamellar vesicles (GUVs) and subsequently polymerized into micrometer-scale reconfigurable one-dimensional (1D) chains or two-dimensional (2D) lattices. Such DNA origami-based networks can be switched between left-handed (LH) and right-handed (RH) conformations by DNA fuels and exhibit potent efficacy in remodeling the membrane curvatures of GUVs. This work sheds light on designing hierarchically assembled dynamic DNA systems for the programmable modulation of synthetic cells for useful applications.


Assuntos
Nanoestruturas , Nanoestruturas/química , Conformação de Ácido Nucleico , Nanotecnologia/métodos , DNA/química , Lipossomas Unilamelares , Lipídeos
6.
Int J Mol Sci ; 24(7)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37047278

RESUMO

Apple replant disease (ARD) is a worldwide economic risk in apple production. Although several studies have shown that the wild apple accession Malus × robusta 5 (Mr5) is ARD-tolerant, the genetics of this tolerance have not yet been elucidated. A genetic mapping approach with a biparental population derived from contrasting parents involving molecular markers provides a means for marker-assisted selection of genetically complex traits and for determining candidate genes. In this study, we crossed the ARD-tolerant wild apple accession Mr5 and the ARD-susceptible rootstock 'M9' and analyzed the resultant progeny for ARD tolerance. Hence, a high-density genetic map using a tunable genotyping-by-sequencing (tGBS) approach was established. A total of 4804 SNPs together with 77 SSR markers were included in the parental maps comprising 17 linkage groups. The phenotypic responses to ARD were evaluated for 106 offspring and classified by an ARD-susceptibility index (ASI). A Kruskal-Wallis test identified SNP markers and one SSR marker on linkage groups (LG) 6 and 2 that correlated with ARD tolerance. We found nine candidate genes linked with these markers, which may be associated with plant response to ARD. These candidate genes provide some insight into the defense mechanisms against ARD and should be studied in more detail.


Assuntos
Malus , Malus/genética , Polimorfismo de Nucleotídeo Único , Mapeamento Cromossômico , Marcadores Genéticos
7.
Chem Rev ; 123(7): 3976-4050, 2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36990451

RESUMO

DNA nanotechnology is a unique field, where physics, chemistry, biology, mathematics, engineering, and materials science can elegantly converge. Since the original proposal of Nadrian Seeman, significant advances have been achieved in the past four decades. During this glory time, the DNA origami technique developed by Paul Rothemund further pushed the field forward with a vigorous momentum, fostering a plethora of concepts, models, methodologies, and applications that were not thought of before. This review focuses on the recent progress in DNA origami-engineered nanomaterials in the past five years, outlining the exciting achievements as well as the unexplored research avenues. We believe that the spirit and assets that Seeman left for scientists will continue to bring interdisciplinary innovations and useful applications to this field in the next decade.


Assuntos
Nanoestruturas , DNA , Nanotecnologia/métodos
8.
Angew Chem Int Ed Engl ; 62(9): e202213992, 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36423337

RESUMO

Control over multiple optical elements that can be dynamically rearranged to yield substantial three-dimensional structural transformations is of great importance to realize reconfigurable plasmonic nanoarchitectures with sensitive and distinct optical feedback. In this work, we demonstrate a transformable plasmonic helix system, in which multiple gold nanoparticles (AuNPs) can be directly transported by DNA swingarms to target positions without undergoing consecutive stepwise movements. The swingarms allow for programmable AuNP translocations in large leaps within plasmonic nanoarchitectures, giving rise to tailored circular dichroism spectra. Our work provides an instructive bottom-up solution to building complex dynamic plasmonic systems, which can exhibit prominent optical responses through cooperative rearrangements of the constituent optical elements with high fidelity and programmability.

9.
Physiol Plant ; 174(5): e13782, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36151889

RESUMO

Climate change with warmer winter and spring temperatures poses major challenges to apple fruit production. Long-term observations confirm the trend toward earlier flowering, which leads to an increased risk of frost damage. New breeding strategies are needed to generate cultivars that are able to stay largely unaffected by warmer temperatures. Recently, epigenetic variation has been proposed as a new resource for breeding purposes and seems suitable in principle for apple breeding. However, to serve as a new resource for apple breeding, it is necessary to clarify whether epigenetic variation can be induced by the environment, whether it can create phenotypic variation, and whether this variation is stable across generations. In this brief review, we summarize the impact of climate change on the timing of apple phenology, highlight how epigenetic variation can potentially support novel breeding strategies, and point out important features of epigenetic variation that are required for its application in breeding programs.


Assuntos
Malus , Malus/genética , Melhoramento Vegetal , Mudança Climática , Estações do Ano , Produtos Agrícolas/genética , Epigênese Genética
10.
ACS Nano ; 16(4): 5284-5291, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35286063

RESUMO

The bacterial flagellar motor is a rotary machine composed of functional modular components, which can perform bidirectional rotations to control the migration behavior of the bacterial cell. It resembles a two-cogwheel gear system, which consists of small and large cogwheels with cogs at the edges to regulate rotations. Such gearset models provide elegant blueprints to design and build artificial nanomachinery with desired functionalities. In this work, we demonstrate DNA assembly of a structurally well-defined nanodevice, which can carry out programmable rotations powered by DNA fuels. Our rotary nanodevice consists of three modular components, small origami ring, large origami ring, and gold nanoparticles (AuNPs). They mimic the sun gear, ring gear, and planet gears in a planetary gearset accordingly. These modular components are self-assembled in a compact manner, such that they can work cooperatively to impart bidirectional rotations. The rotary dynamics is optically recorded using fluorescence spectroscopy in real time, given the sensitive distance-dependent interactions between the tethered fluorophores and AuNPs on the rings. The experimental results are well supported by the theoretical calculations.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , DNA/química
11.
F1000Res ; 11: 12, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36636476

RESUMO

With the ongoing cost decrease of genotyping and sequencing technologies, accurate and fast phenotyping remains the bottleneck in the utilizing of plant genetic resources for breeding and breeding research. Although cost-efficient high-throughput phenotyping platforms are emerging for specific traits and/or species, manual phenotyping is still widely used and is a time- and money-consuming step. Approaches that improve data recording, processing or handling are pivotal steps towards the efficient use of genetic resources and are demanded by the research community. Therefore, we developed PhenoApp, an open-source Android app for tablets and smartphones to facilitate the digital recording of phenotypical data in the field and in greenhouses. It is a versatile tool that offers the possibility to fully customize the descriptors/scales for any possible scenario, also in accordance with international information standards such as MIAPPE (Minimum Information About a Plant Phenotyping Experiment) and FAIR (Findable, Accessible, Interoperable, and Reusable) data principles. Furthermore, PhenoApp enables the use of pre-integrated ready-to-use BBCH (Biologische Bundesanstalt für Land- und Forstwirtschaft, Bundessortenamt und CHemische Industrie) scales for apple, cereals, grapevine, maize, potato, rapeseed and rice. Additional BBCH scales can easily be added. The simple and adaptable structure of input and output files enables an easy data handling by either spreadsheet software or even the integration in the workflow of laboratory information management systems (LIMS). PhenoApp is therefore a decisive contribution to increase efficiency of digital data acquisition in genebank management but also contributes to breeding and breeding research by accelerating the labour intensive and time-consuming acquisition of phenotyping data.


Assuntos
Melhoramento Vegetal , Plantas , Software , Fenótipo
12.
Genomics ; 113(6): 4173-4183, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34774678

RESUMO

Cherries are stone fruits and belong to the economically important plant family of Rosaceae with worldwide cultivation of different species. The ground cherry, Prunus fruticosa Pall., is an ancestor of cultivated sour cherry, an important tetraploid cherry species. Here, we present a long read chromosome-level draft genome assembly and related plastid sequences using the Oxford Nanopore Technology PromethION platform and R10.3 pore type. We generated a final consensus genome sequence of 366 Mb comprising eight chromosomes. The N50 scaffold was ~44 Mb with the longest chromosome being 66.5 Mb. The chloroplast and mitochondrial genomes were 158,217 bp and 383,281 bp long, which is in accordance with previously published plastid sequences. This is the first report of the genome of ground cherry (P. fruticosa) sequenced by long read technology only. The datasets obtained from this study provide a foundation for future breeding, molecular and evolutionary analysis in Prunus studies.


Assuntos
Physalis , Prunus , Cromossomos , Physalis/genética , Melhoramento Vegetal , Prunus/genética , Tetraploidia
13.
BMC Res Notes ; 14(1): 291, 2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34315526

RESUMO

OBJECTIVE: The proposed candidate gene underlying the Malus fusca fire blight resistance locus on chromosome 10 was previously predicted to possess 880 amino acids and 8 exons. Eight base pair (8 bp) insertion/deletion in the first exon potentially distinguished resistant genotypes from susceptible ones. This study aimed at analyzing the candidate gene sequence in another set of original resistant and susceptible progeny, characterizing the sequence in a transgenic line transformed with the candidate gene under its own native promoter, as well as deciphering the potential genomic differences between this candidate gene and its homolog in the 'Golden Delicious' doubled haploid genome (GDDH13). RESULTS: Sequences of amplicons of part of the candidate gene amplified in two progenies that showed resistant and susceptible fire blight phenotypes, confirmed the 8 bp insertion that distinguishes susceptible and resistant progenies. The transgenic line was positive for the candidate gene sequence, confirming a successful transfer into the background of apple cultivar 'Pinova', and possessed the same genomic sequence as the progeny with a resistant phenotype. Sequence analysis showed that the homolog gene on GDDH13 possesses a significant 18 bp deletion in exon 1 leading to a difference of 15 amino acid from the protein sequence of the candidate gene.


Assuntos
Malus , Sequência de Bases , Resistência à Doença/genética , Genômica , Doenças das Plantas/genética
14.
Plants (Basel) ; 10(6)2021 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-34208651

RESUMO

A set of 680 apple cultivars from the Fruit Gene bank in Dresden Pillnitz was evaluated for the incidence of powdery mildew and scab in two consecutive years. The incidence of both scab and powdery mildew increased significantly in the second year. Sixty and 43 cultivars with very low incidence in both years of scab and powdery mildew, respectively, were analysed with molecular markers linked to known resistance genes. Thirty-five cultivars were identified to express alleles or combinations of alleles linked to Rvi2, Rvi4, Rvi6, Rvi13, Rvi14, or Rvi17. Twenty of them, modern as well as a few traditional cultivars known before the introduction or Rvi6 from Malus floribunda 821, amplified the 159 bp fragment of marker CH_Vf1 that is linked to Rvi6. Alleles linked to Pl1, Pld, or Plm were expressed from five cultivars resistant to powdery mildew. Eleven cultivars were identified to have very low susceptibility to both powdery mildew and scab. The information on resistance/susceptibility of fruit genetic resources towards economically important diseases is important for breeding and for replanting traditional cultivars. Furthermore, our work provides a well-defined basis for the discovery of undescribed, new scab, and powdery mildew resistance.

15.
Front Plant Sci ; 12: 667133, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33959143

RESUMO

Malus ×arnoldiana accession MAL0004 has been found to be resistant to moderately and highly virulent strains of the fire blight causal pathogen - the Gram-negative bacterium, Erwinia amylovora. Genetic analyses with an F1 segregating population derived from crossing the highly susceptible apple cultivar 'Idared' and MAL0004 led to the detection and mapping of the fire blight resistance locus of M. ×arnoldiana to linkage group (LG)12 (FB_Mar12). FB_Mar12 mapped at the distal end of LG12 below the apple SSR Hi07f01 in an interval of approximately 6 cM (Centimorgan), where both the fire blight resistance loci of M. floribunda 821 and 'Evereste' were located. We fine mapped the region containing FB_Mar12 using 892 progenies. Mining of the region of interest (ROI) on the 'Golden Delicious' doubled haploid genome (GDDH13) identified the presence of 2.3 Mb (megabases) in the homologous region. Of 40 primer pairs designed within this region, 20 were polymorphic and nine were mapped, leading to the identification of 24 significant recombinant individuals whose phenotypes were informative in determining the precise position of the locus within a 0.57 cM interval. Analyses of tightly linked marker sequences on the M. baccata draft genome revealed scaffolds of interest putatively harboring the resistance loci of M. ×arnoldiana, a hybrid between M. baccata and M. floribunda. Open reading frame (ORF) analyses led to the prediction of first fire blight resistance candidate genes with serine/threonine kinase and leucine-rich repeat domains, including homologs of previously identified 'Evereste' candidate genes. We discuss the implications of these results on breeding for resistance to fire blight.

16.
Sci Rep ; 11(1): 8685, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888770

RESUMO

Most of the commercial apple cultivars are highly susceptible to fire blight, which is the most devastating bacterial disease affecting pome fruits. Resistance to fire blight is described especially in wild Malus accessions such as M. × robusta 5 (Mr5), but the molecular basis of host resistance response to the pathogen Erwinia amylovora is still largely unknown. The bacterial effector protein AvrRpt2EA was found to be the key determinant of resistance response in Mr5. A wild type E. amylovora strain and the corresponding avrRpt2EA deletion mutant were used for inoculation of Mr5 to induce resistance or susceptible response, respectively. By comparison of the transcriptome of both responses, 211 differentially expressed genes (DEGs) were identified. We found that heat-shock response including heat-shock proteins (HSPs) and heat-shock transcription factors (HSFs) are activated in apple specifically in the susceptible response, independent of AvrRpt2EA. Further analysis on the expression progress of 81 DEGs by high-throughput real-time qPCR resulted in the identification of genes that were activated after inoculation with E. amylovora. Hence, a potential role of these genes in the resistance to the pathogen is postulated, including genes coding for enzymes involved in formation of flavonoids and terpenoids, ribosome-inactivating enzymes (RIPs) and a squamosa promoter binding-like (SPL) transcription factor.


Assuntos
Erwinia amylovora/patogenicidade , Perfilação da Expressão Gênica , Malus/microbiologia , Transcrição Gênica , Resistência à Doença/genética , Interações Hospedeiro-Patógeno
17.
Front Plant Sci ; 12: 803341, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111181

RESUMO

Winter dormancy - a period of low metabolic activity and no visible growth - appears as an adaptation to harsh winter conditions and can be divided into different phases. It is tightly controlled by environmental cues, with ambient temperature playing a major role. During endodormancy, a cultivar-specific amount of cold needs to be perceived, and during ecodormancy, heat hours accumulate before bud burst and anthesis in spring. Expression analysis, performed in several key fruit tree species, proved to be very useful in elucidating the molecular control of onset and release of dormancy. However, the time resolution of these experiments has been limited. Therefore, in this study, dense time-series expression analysis was conducted for 40 candidate genes involved in dormancy control, under the cool-temperate climate conditions in Dresden. Samples were taken from the cultivars 'Pinova' and 'Gala,' which differ in flowering time. The set of candidate genes included well-established dormancy genes such as DAM genes, MdFLC-like, MdICE1, MdPRE 1, and MdPIF4. Furthermore, we tested genes from dormancy-associated pathways including the brassinosteroid, gibberellic acid, abscisic acid (ABA), cytokinin response, and respiratory stress pathways. The expression patterns of well-established dormancy genes were confirmed and could be associated with specific dormancy phases. In addition, less well-known transcription factors and genes of the ABA signaling pathway showed associations with dormancy progression. The three ABA signaling genes HAB1_chr15, HAI3, and ABF2 showed a local minimum of gene expression in proximity of the endodormancy to ecodormancy transition. The number of sampling points allowed us to correlate expression values with temperature data, which revealed significant correlations of ambient temperature with the expression of the Malus domestica genes MdICE1, MdPIF4, MdFLC-like, HAB1chr15, and the type-B cytokinin response regulator BRR9. Interestingly, the slope of the linear correlation of temperature with the expression of MdPIF4 differed between cultivars. Whether the strength of inducibility of MdPIF4 expression by low temperature differs between the 'Pinova' and 'Gala' alleles needs to be tested further.

18.
Sci Rep ; 10(1): 16358, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33005026

RESUMO

Although, the Pacific crabapple, Malus fusca, is a hardy and disease resistant species, studies relating to the genetics of its unique traits are very limited partly due to the lack of a genetic map of this interesting wild apple. An accession of M. fusca (MAL0045) of Julius Kühn-Institut collection in Germany is highly resistant to fire blight disease, incited by different strains of the causative pathogen-Erwinia amylovora. This is the most destructive bacterial disease of Malus of which most of the domesticated apples (Malus domestica) are susceptible. Using a scarcely dense genetic map derived from a population of 134 individuals of MAL0045 × 'Idared', the locus (Mfu10) controlling fire blight resistance mapped on linkage group 10 (LG10) and explained up to 66% of the phenotypic variance with different strains. Although the development of robust and tightly linked molecular markers on LG10 through chromosome walking approach led to the identification of a major candidate gene, any minor effect locus remained elusive possibly due to the lack of marker density of the entire genetic map. Therefore, we have developed a dense genetic map of M. fusca using tunable genotyping-by-sequencing (tGBS) approach. Of thousands of de novo SNPs identified, 2677 were informative in M. fusca and 90.5% of these successfully mapped. In addition, integration of SNP data and microsatellite (SSR) data resulted in a final map comprising 17 LGs with 613 loci spanning 1081.35 centi Morgan (cM). This map will serve as a template for mapping using different strains of the pathogen.


Assuntos
Resistência à Doença/genética , Malus/genética , Repetições de Microssatélites/genética , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Erwinia amylovora , Genótipo
19.
Plant Dis ; 104(8): 2074-2081, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32525450

RESUMO

Apple scab, caused by Venturia inaequalis, is a major fungal disease worldwide. Cultivation of scab-resistant cultivars would reduce the chemical footprint of apple production. However, new apple cultivars carrying durable resistances should be developed to prevent or at least slow the breakdown of resistance against races of V. inaequalis. One way to achieve durable resistance is to pyramid multiple scab resistance genes in a cultivar. The choice of the resistance genes to be combined in the pyramids should take into account the frequency of resistance breakdown and the geographical distribution of apple scab isolates able to cause such breakdowns. In order to acquire this information and to make it available to apple breeders, the VINQUEST project (www.vinquest.ch) was initiated in 2009. Ten years after launching this project, 24 partners from 14 countries regularly contribute data. From 2009 to 2018, nearly 9,000 data points have been collected. This information has been used to identify the most promising apple scab resistance genes for developing cultivars with durable resistance, which to date are: Rvi5, Rvi11, Rvi12, Rvi14, and Rvi15. As expected, Rvi1, together with Rvi3 and Rvi8, were often overcome, and have little value for scab resistance breeding. Rvi10 may also belong to this group. On the other hand, Rvi2, Rvi4, Rvi6, Rvi7, Rvi9, and Rvi13 are still useful for breeding, but their use is recommended only in extended pyramids of ≥3 resistance genes.


Assuntos
Ascomicetos , Malus/genética , Cruzamento , Genes de Plantas , Doenças das Plantas
20.
Small ; 16(6): e1905987, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31917513

RESUMO

Mechanically interlocked molecules have marked a breakthrough in the field of topological chemistry and boosted the vigorous development of molecular machinery. As an archetypal example of the interlocked molecules, catenanes comprise macrocycles that are threaded through one another like links in a chain. Inspired by the transition metal-templated approach of catenanes synthesis, the hierarchical assembly of DNA origami catenanes templated by gold nanoparticles is demonstrated in this work. DNA origami catenanes, which contain two, three or four interlocked rings are successfully created. In particular, the origami rings within the individual catenanes can be set free with respect to one another by releasing the interconnecting gold nanoparticles. This work will set the basis for rich progress toward DNA-based molecular architectures with unique structural programmability and well-defined topology.


Assuntos
Catenanos , DNA Catenado , Ouro , Nanopartículas Metálicas , Catenanos/química , DNA/química , DNA Catenado/química , Ouro/química , Nanopartículas Metálicas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...