Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Physiol Biochem ; 80(2): 363-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393636

RESUMO

The insulin receptor (IR) plays an important role in insulin signal transduction, the defect of which is believed to be the root cause of type 2 diabetes. In 3T3-L1 adipocytes as in other cell types, the mature IR is a heterotetrameric cell surface glycoprotein composed of two α subunits and two ß subunits. Our objective in our study, is to understand how the desialylation of N-glycan chains, induced by elastin-derived peptides, plays a major role in the function of the IR. Using the 3T3-L1 adipocyte line, we show that removal of the sialic acid from N-glycan chains (N893 and N908), induced by the elastin receptor complex (ERC) and elastin derived-peptides (EDPs), leads to a decrease in the autophosphorylation activity of the insulin receptor. We demonstrate by molecular dynamics approaches that the absence of sialic acids on one of these two sites is sufficient to generate local and general modifications of the structure of the IR. Biochemical approaches highlight a decrease in the interaction between insulin and its receptor when ERC sialidase activity is induced by EDPs. Therefore, desialylation by EDPs is synonymous with a decrease of IR sensitivity in adipocytes and could thus be a potential source of insulin resistance associated with diabetic conditions.


Assuntos
Células 3T3-L1 , Adipócitos , Elastina , Insulina , Receptor de Insulina , Receptores de Superfície Celular , Ácidos Siálicos , Animais , Receptor de Insulina/metabolismo , Camundongos , Adipócitos/metabolismo , Insulina/metabolismo , Elastina/metabolismo , Ácidos Siálicos/metabolismo , Fosforilação , Resistência à Insulina , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Ácido N-Acetilneuramínico/metabolismo , Transdução de Sinais
2.
Nutrients ; 15(3)2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36771214

RESUMO

Abetalipoproteinemia (FHBL-SD1) and chylomicron retention disease (FHBL-SD3) are rare recessive disorders of lipoprotein metabolism due to mutations in MTTP and SAR1B genes, respectively, which lead to defective chylomicron formation and secretion. This results in lipid and fat-soluble vitamin malabsorption, which induces severe neuro-ophthalmic complications. Currently, treatment combines a low-fat diet with high-dose vitamin A and E supplementation but still fails in normalizing serum vitamin E levels and providing complete ophthalmic protection. To explore these persistent complications, we developed two knock-out cell models of FHBL-SD1 and FHBL-SD3 using the CRISPR/Cas9 technique in Caco-2/TC7 cells. DNA sequencing, RNA quantification and Western blotting confirmed the introduction of mutations with protein knock-out in four clones associated with i) impaired lipid droplet formation and ii) defective triglyceride (-57.0 ± 2.6% to -83.9 ± 1.6%) and cholesterol (-35.3 ± 4.4% to -60.6 ± 3.5%) secretion. A significant decrease in α-tocopherol secretion was also observed in these clones (-41.5 ± 3.7% to -97.2 ± 2.8%), even with the pharmaceutical forms of vitamin E: tocopherol-acetate and tocofersolan (α-tocopheryl polyethylene glycol succinate 1000). MTTP silencing led to a more severe phenotype than SAR1B silencing, which is consistent with clinical observations. Our cellular models thus provide an efficient tool to experiment with therapeutic strategies and will allow progress in understanding the mechanisms involved in lipid metabolism.


Assuntos
Hipobetalipoproteinemias , Proteínas Monoméricas de Ligação ao GTP , Humanos , alfa-Tocoferol , Apolipoproteínas B/genética , Células CACO-2 , Enterócitos/metabolismo , Hipobetalipoproteinemias/genética , Hipobetalipoproteinemias/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Vitamina E/farmacologia
3.
Arthritis Rheumatol ; 74(6): 1027-1038, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35001552

RESUMO

OBJECTIVE: Systemic sclerosis (SSc) is an autoimmune disorder characterized by excessive fibrosis, immune dysfunction, and vascular damage, in which the expression of many growth factors is deregulated. CD146 was recently described as a major actor in SSc. Since CD146 also exists as a circulating soluble form (sCD146) that acts as a growth factor in numerous angiogenic- and inflammation-related pathologies, we sought to identify the mechanisms underlying the generation of sCD146 and to characterize the regulation and functions of the different variants identified in SSc. METHODS: We performed in vitro experiments, including RNA-Seq and antibody arrays, and in vivo experiments using animal models of bleomycin-induced SSc and hind limb ischemia. RESULTS: Multiple forms of sCD146, generated by both shedding and alternative splicing of the primary transcript, were discovered. The shed form of sCD146 was generated from the cleavage of both long and short membrane isoforms of CD146 through ADAM-10 and TACE metalloproteinases, respectively. In addition, 2 novel sCD146 splice variants, I5-13-sCD146 and I10-sCD146, were identified. Of interest, I5-13-sCD146 was significantly increased in the sera of SSc patients (P < 0.001; n = 117), in particular in patients with pulmonary fibrosis (P < 0.01; n = 112), whereas I10-sCD146 was decreased (P < 0.05; n = 117). Further experiments revealed that shed sCD146 and I10-sCD146 displayed proangiogenic activity through the focal adhesion kinase and protein kinase Cε signaling pathways, respectively, whereas I5-13-sCD146 displayed profibrotic effects through the Wnt-1/ß-catenin/WISP-1 pathway. CONCLUSION: Variants of sCD146, and in particular the novel I5-13-sCD146 splice variant, could constitute novel biomarkers and/or molecular targets for the diagnosis and treatment of SSc and other angiogenesis- or fibrosis-related disorders.


Assuntos
Antígeno CD146 , Escleroderma Sistêmico , Animais , Biomarcadores , Antígeno CD146/genética , Antígeno CD146/metabolismo , Fibrose , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Isquemia , Escleroderma Sistêmico/genética , Escleroderma Sistêmico/metabolismo
4.
J Thromb Haemost ; 19(9): 2287-2301, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34060193

RESUMO

BACKGROUND: GATA1 is an essential transcription factor for both polyploidization and megakaryocyte (MK) differentiation. The polyploidization defect observed in GATA1 variant carriers is not well understood. OBJECTIVE: To extensively phenotype two pedigrees displaying different variants in the GATA1 gene and determine if GATA1 controls MYH10 expression levels, a key modulator of MK polyploidization. METHOD: A total of 146 unrelated propositi with constitutional thrombocytopenia were screened on a multigene panel. We described the genotype-phenotype correlation in GATA1 variant carriers and investigated the effect of these novel variants on MYH10 transcription using luciferase constructs. RESULTS: The clinical profile associated with the p.L268M variant localized in the C terminal zinc finger was unusual in that the patient displayed bleeding and severe platelet aggregation defects without early-onset thrombocytopenia. p.N206I localized in the N terminal zinc finger was associated, on the other hand, with severe thrombocytopenia (15G/L) in early life. High MYH10 levels were evidenced in platelets of GATA1 variant carriers. Analysis of MKs anti-GATA1 chromatin immunoprecipitation-sequencing data revealed two GATA1 binding sites, located in the 3' untranslated region and in intron 8 of the MYH10 gene. Luciferase reporter assays showed their respective role in the regulation of MYH10 gene expression. Both GATA1 variants significantly alter intron 8 driven MYH10 transcription. CONCLUSION: The discovery of an association between MYH10 and GATA1 is a novel one. Overall, this study suggests that impaired MYH10 silencing via an intronic regulatory element is the most likely cause of GATA1-related polyploidization defect.


Assuntos
Fator de Transcrição GATA1 , Megacariócitos , Cadeias Pesadas de Miosina/genética , Miosina não Muscular Tipo IIB/genética , Trombocitopenia , Plaquetas , Fator de Transcrição GATA1/genética , Inativação Gênica , Humanos , Trombocitopenia/genética , Trombopoese/genética , Fatores de Transcrição
5.
J Biol Chem ; 297(1): 100818, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34029592

RESUMO

The cleavage of the insulin receptor by ß-secretase 1 (BACE1) in the liver increases during diabetes, which contributes to reduce insulin receptor levels and impair insulin signaling. However, the precise signaling events that lead to this increased cleavage are unclear. We showed that BACE1 cleaves the insulin receptor in the early secretory pathway. Indeed, coimmunoprecipitation experiments reveal the interaction of the proforms of the two proteins. Moreover, fragments of insulin receptor are detected in the early secretory pathway and a mutated form of BACE1 that retains its prodomain cleaves an early secretory pathway-resident form of the insulin receptor. We showed that BACE1 proform levels are regulated by proteasome and/or lysosome-dependent degradation systems whose efficiencies are dependent on the O-GlcNacylation process. Our results showed that enhanced O-GlcNacylation reduces the efficiency of intracellular protein degradation systems, leading to the accumulation of the proform of BACE1 in the early secretory pathway where it cleaves the precursor of the insulin receptor. All these dysregulations are found in the livers of diabetic mice. In addition, we performed a screen of molecules according to their ability to increase levels of the insulin receptor at the surface of BACE1-overexpressing cells. This approach identified the aminosterol Claramine, which accelerated intracellular trafficking of the proform of BACE1 and increased autophagy. Both of these effects likely contribute to the reduced amount of the proform of BACE1 in the early secretory pathway, thereby reducing insulin receptor cleavage. These newly described properties of Claramine are consistent with its insulin sensitizing effect.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Colestanos/farmacologia , Receptor de Insulina/metabolismo , Espermina/análogos & derivados , Animais , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Glicosilação/efeitos dos fármacos , Células HEK293 , Células Hep G2 , Humanos , Fígado/patologia , Modelos Biológicos , Ligação Proteica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Proteostase/efeitos dos fármacos , Via Secretória/efeitos dos fármacos , Espermina/farmacologia , Ubiquitina/metabolismo , Ubiquitinação/efeitos dos fármacos
6.
J Ethnopharmacol ; 270: 113772, 2021 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-33418030

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Citrullus colocynthis (L.) Schrad is a common fruit in traditional medicine and used as remedy against various diseases, especially diabetes. Up to now, its anti-diabetic effects have been fully attributed to its enhancement of pancreatic insulin secretion. Whether C. colocynthis also ameliorates insulin action in peripheral tissues has not been investigated. AIM OF THE STUDY: In the present study, using 3T3-L1 adipocytes as cell model, we have investigated whether colocynth fruit extracts affect insulin action. MATERIALS AND METHODS: Various extracts were prepared from the C. colocynthis fruit and screened using a cell-based 96 well plate GLUT4 translocation assay. Promising extracts were further studied for their effects on glucose uptake and cell viability. The effect on insulin signal transduction was determined by Western blot and the molecular composition was established by LC-MS. RESULTS: The ethyl acetate fractions of aqueous non-defatted extracts of seed and pulp, designated Sna1 and Pna1, acutely enhanced insulin-induced GLUT4 translocation. In accordance, both extracts increased insulin-stimulated cellular glucose uptake. Pna1, which displayed greater effects on GLUT4 and glucose uptake than Sna1, was further investigated and was demonstrated to increase GLUT4 translocation without changing the half-maximum dose (ED50) of insulin, nor changing GLUT4 translocation kinetics. At the molecular level, Pna1 was found to enhance insulin-induced PKB phosphorylation without changing phosphorylation of the insulin receptor. Pna1 appeared not to be toxic to cells and, like insulin, restored cell viability during serum starvation. By investigating the molecular composition of Pna1, nine compounds were identified that made up 87% of the mass of the extract, one of which is likely to be responsible for the insulin-enhancing effects of Pna1. CONCLUSIONS: The C. colocynthis fruit possesses insulin-enhancing activity. This activity may explain in part its anti-diabetic effects in traditional medicine. It also identifies the C. colocynthis as a source of a potential novel insulin enhancer that may prove to be useful to reduce hyperglycemia in type 2 diabetes.


Assuntos
Citrullus colocynthis/química , Frutas/química , Transportador de Glucose Tipo 4/metabolismo , Hipoglicemiantes/farmacologia , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Animais , Metabolismo dos Carboidratos/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Glucose/metabolismo , Hipoglicemiantes/química , Insulina/metabolismo , Resistência à Insulina , Medicina Tradicional , Camundongos , Fosforilação/efeitos dos fármacos , Extratos Vegetais/química , Transporte Proteico
7.
PLoS Genet ; 17(1): e1009284, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465109

RESUMO

Rare variants outside the classical coagulation cascade might cause inherited thrombosis. We aimed to identify the variant(s) causing venous thromboembolism (VTE) in a family with multiple relatives affected with unprovoked VTE and no thrombophilia defects. We identified by whole exome sequencing an extremely rare Arg to Gln variant (Arg89Gln) in the Microtubule Associated Serine/Threonine Kinase 2 (MAST2) gene that segregates with VTE in the family. Free-tissue factor pathway inhibitor (f-TFPI) plasma levels were significantly decreased in affected family members compared to healthy relatives. Conversely, plasminogen activator inhibitor-1 (PAI-1) levels were significantly higher in affected members than in healthy relatives. RNA sequencing analysis of RNA interference experimental data conducted in endothelial cells revealed that, of the 13,387 detected expressed genes, 2,354 have their level of expression modified by MAST2 knockdown, including SERPINE1 coding for PAI-1 and TFPI. In HEK293 cells overexpressing the MAST2 Gln89 variant, TFPI and SERPINE1 promoter activities were respectively lower and higher than in cells overexpressing the MAST2 wild type. This study identifies a novel thrombophilia-causing Arg89Gln variant in the MAST2 gene that is here proposed as a new molecular player in the etiology of VTE by interfering with hemostatic balance of endothelial cells.


Assuntos
Proteínas Associadas aos Microtúbulos/genética , Inibidor 1 de Ativador de Plasminogênio/genética , Proteínas Serina-Treonina Quinases/genética , Trombofilia/genética , Trombose Venosa/genética , Adulto , Células Endoteliais/metabolismo , Feminino , Predisposição Genética para Doença , Células HEK293 , Humanos , Lipoproteínas/genética , Masculino , Pessoa de Meia-Idade , Mutação/genética , Linhagem , Fatores de Risco , Trombofilia/patologia , Tromboembolia Venosa/genética , Tromboembolia Venosa/patologia , Trombose Venosa/patologia , Sequenciamento do Exoma
8.
Cells ; 9(11)2020 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-33171828

RESUMO

Thermogenic brown and brite adipocytes convert chemical energy from nutrients into heat. Therapeutics that regulate brown adipocyte recruitment and activity represent interesting strategies to control fat mass such as in obesity or cachexia. The peroxisome proliferator-activated receptor (PPAR) family plays key roles in the maintenance of adipose tissue and in the regulation of thermogenic activity. Activation of these receptors induce browning of white adipocyte. The purpose of this work was to characterize the role of carnosic acid (CA), a compound used in traditional medicine, in the control of brown/brite adipocyte formation and function. We used human multipotent adipose-derived stem (hMADS) cells differentiated into white or brite adipocytes. The expression of key marker genes was determined using RT-qPCR and western blotting. We show here that CA inhibits the browning of white adipocytes and favors decreased gene expression of thermogenic markers. CA treatment does not affect ß-adrenergic response. Importantly, the effects of CA are fully reversible. We used transactivation assays to show that CA has a PPARα/γ antagonistic action. Our data pinpoint CA as a drug able to control PPAR activity through an antagonistic effect. These observations shed some light on the development of natural PPAR antagonists and their potential effects on thermogenic response.


Assuntos
Abietanos/farmacologia , Adipócitos Marrons/metabolismo , Adipócitos Brancos/metabolismo , Receptores Ativados por Proliferador de Peroxissomo/antagonistas & inibidores , Rosmarinus/química , Adipócitos Bege/efeitos dos fármacos , Adipócitos Bege/metabolismo , Adipócitos Marrons/efeitos dos fármacos , Adipócitos Brancos/efeitos dos fármacos , Animais , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Lipólise/efeitos dos fármacos , Camundongos , Receptores Ativados por Proliferador de Peroxissomo/metabolismo , Rosiglitazona/farmacologia , Termogênese/efeitos dos fármacos , Termogênese/genética
9.
J Med Chem ; 63(21): 13124-13139, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33142057

RESUMO

A proprietary library of novel N-aryl-substituted amino acid derivatives bearing a hydroxamate head group allowed the identification of compound 3a that possesses weak proadipogenic and peroxisome proliferator-activated receptor γ (PPARγ) activating properties. The systematic optimization of 3a, in order to improve its PPARγ agonist activity, led to the synthesis of compound 7j (N-aryl-substituted valine derivative) that possesses dual PPARγ/PPARα agonistic activity. Structural and kinetic analyses reveal that 7j occupies the typical ligand binding domain of the PPARγ agonists with, however, a unique high-affinity binding mode. Furthermore, 7j is highly effective in preventing cyclin-dependent kinase 5-mediated phosphorylation of PPARγ serine 273. Although less proadipogenic than rosiglitazone, 7j significantly increases adipocyte insulin-stimulated glucose uptake and efficiently promotes white-to-brown adipocyte conversion. In addition, 7j prevents oleic acid-induced lipid accumulation in hepatoma cells. The unique biochemical properties and biological activities of compound 7j suggest that it would be a promising candidate for the development of compounds to reduce insulin resistance, obesity, and nonalcoholic fatty liver disease.


Assuntos
PPAR gama/metabolismo , Valina/análogos & derivados , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Sítios de Ligação , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Glucose/metabolismo , Hepatócitos/citologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Cinética , Metabolismo dos Lipídeos/efeitos dos fármacos , Simulação de Acoplamento Molecular , PPAR alfa/agonistas , PPAR alfa/genética , PPAR alfa/metabolismo , PPAR gama/agonistas , PPAR gama/genética , Fosforilação/efeitos dos fármacos , Ligação Proteica , Ratos , Ativação Transcricional/efeitos dos fármacos , Valina/metabolismo , Valina/farmacologia
10.
Biochem J ; 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33216850

RESUMO

Fluorophore 2',7'-dichlorofluorescin (DCF) is the most frequently used probe for measuring oxidative stress in cells, but many aspects of DCF remain to be revealed. Here, DCF was used to study the Fenton reaction in detail, which confirmed that in a cell-free system, the hydroxyl radical was easily measured by DCF, accompanied by the consumption of H2O2 and the conversion of ferrous iron into ferric iron. DCF fluorescence was more specific for hydroxyl radicals than the measurement of thiobarbituric acid (TBA)-reactive 2-deoxy-D-ribose degradation products, which also detected H2O2. As expected, hydroxyl radical-induced DCF fluorescence was inhibited by iron chelation, anti-oxidants, and hydroxyl radical scavengers and enhanced by low concentrations of ascorbate. Remarkably, due to DCF fluorescence auto-amplification, Fenton reaction-induced DCF fluorescence steadily increased in time even when all ferrous iron was oxidized. Surprisingly, the addition of bovine serum albumin rendered DCF sensitive to H2O2 as well. Within cells, DCF appeared not to react directly with H2O2 but indirect via the formation of hydroxyl radicals, since H2O2-induced cellular DCF fluorescence was fully abolished by iron chelation and hydroxyl radical scavenging. Iron chelation in H2O2-stimulated cells in which DCF fluorescence was already increasing did not abrogate further increases in fluorescence, suggesting DCF fluorescence auto-amplification in cells. Collectively, these data demonstrate that DCF is a very useful probe to detect hydroxyl radicals and hydrogen peroxide and to study Fenton chemistry, both in test tubes as well as in intact cells, and that fluorescence auto-amplification is an intrinsic property of DCF.

11.
Cell Chem Biol ; 27(11): 1425-1433.e7, 2020 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-32846115

RESUMO

Glycine receptors (GlyRs) are indispensable for maintaining excitatory/inhibitory balance in neuronal circuits that control reflexes and rhythmic motor behaviors. Here we have developed Glyght, a GlyR ligand controlled with light. It is selective over other Cys-loop receptors, is active in vivo, and displays an allosteric mechanism of action. The photomanipulation of glycinergic neurotransmission opens new avenues to understanding inhibitory circuits in intact animals and to developing drug-based phototherapies.


Assuntos
Compostos Azo/farmacologia , Receptores de Glicina/antagonistas & inibidores , Animais , Compostos Azo/síntese química , Compostos Azo/química , Células Cultivadas , Cricetulus , Feminino , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Acoplamento Molecular , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Processos Fotoquímicos , Receptores de Glicina/metabolismo , Transmissão Sináptica/efeitos dos fármacos
12.
J Med Chem ; 63(9): 4811-4823, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32239932

RESUMO

PPARγ represents a key target for the treatment of type 2 diabetes and metabolic syndrome. Synthetic antidiabetic drugs activating PPARγ are accompanied by serious undesirable side effects related to their agonism. In the search for new PPARγ regulators, inhibitors of PPARγ phosphorylation on S245 mediated by CDK5 represent an opportunity for the development of an improved generation of antidiabetic drugs acting through this nuclear receptor. We have employed a multidisciplinary approach, including protein-protein docking, X-ray crystallography, NMR, HDX, MD simulations, and site-directed mutagenesis to investigate conformational changes in PPARγ that impair the ability of CDK5 to interact with PPARγ and hence inhibit PPARγ phosphorylation. Finally, we describe an alternative inhibition mechanism adopted by a ligand bound far from the phosphorylation site.


Assuntos
PPAR gama/metabolismo , Fosforilação/efeitos dos fármacos , Sequência de Aminoácidos , Compostos de Bifenilo/química , Compostos de Bifenilo/metabolismo , Quinase 5 Dependente de Ciclina/metabolismo , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Mutação , Proteínas do Tecido Nervoso/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/química , PPAR gama/genética , Fenilpropionatos/química , Fenilpropionatos/metabolismo , Ligação Proteica , Conformação Proteica , Serina/química
14.
Sci Rep ; 9(1): 9631, 2019 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-31270351

RESUMO

Increased platelet activity occurs in type 2 diabetes mellitus (T2DM) and such platelet dysregulation likely originates from altered megakaryopoiesis. We initiated identification of dysregulated pathways in megakaryocytes in the setting of T2DM. We evaluated through transcriptomic analysis, differential gene expressions in megakaryocytes from leptin receptor-deficient mice (db/db), exhibiting features of human T2DM, and control mice (db/+). Functional gene analysis revealed an upregulation of transcripts related to calcium signaling, coagulation cascade and platelet receptors in diabetic mouse megakaryocytes. We also evidenced an upregulation (7- to 9.7-fold) of genes encoding stefin A (StfA), the human ortholog of Cystatin A (CSTA), inhibitor of cathepsin B, H and L. StfA/CSTA was present in megakaryocytes and platelets and its expression increased during obesity and diabetes in rats and humans. StfA/CSTA was primarily localized at platelet membranes and granules and was released upon agonist stimulation and clot formation through a metalloprotease-dependent mechanism. StfA/CSTA did not affect platelet aggregation, but reduced platelet accumulation on immobilized collagen from flowing whole blood (1200 s-1). In-vivo, upon laser-induced vascular injury, platelet recruitment and thrombus formation were markedly reduced in StfA1-overexpressing mice without affecting bleeding time. The presence of CA-074Me, a cathepsin B specific inhibitor significantly reduced thrombus formation in-vitro and in-vivo in human and mouse, respectively. Our study identifies StfA/CSTA as a key contributor of platelet-dependent thrombus formation in both rodents and humans.


Assuntos
Plaquetas/enzimologia , Cistatina A/metabolismo , Diabetes Mellitus Experimental/complicações , Megacariócitos/enzimologia , Trombose/prevenção & controle , Animais , Sinalização do Cálcio , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ativação Plaquetária , Agregação Plaquetária , Ratos , Ratos Wistar , Trombose/etiologia , Trombose/metabolismo , Trombose/patologia
15.
Br J Pharmacol ; 176(15): 2661-2677, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30981211

RESUMO

BACKGROUND AND PURPOSE: Anion-selective Cys-loop receptors (GABA and glycine receptors) provide the main inhibitory drive in the CNS. Both types of receptor operate via chloride-selective ion channels, though with different kinetics, pharmacological profiles, and localization. Disequilibrium in their function leads to a variety of disorders, which are often treated with allosteric modulators. The few available GABA and glycine receptor channel blockers effectively suppress inhibitory currents in neurons, but their systemic administration is highly toxic. With the aim of developing an efficient light-controllable modulator of GABA receptors, we constructed azobenzene-nitrazepam (Azo-NZ1), which is composed of a nitrazepam moiety merged to an azobenzene photoisomerizable group. EXPERIMENTAL APPROACH: The experiments were carried out on cultured cells expressing Cys-loop receptors of known subunit composition and in brain slices using patch-clamp. Site-directed mutagenesis and molecular modelling approaches were applied to evaluate the mechanism of action of Azo-NZ1. KEY RESULTS: At visible light, being in trans-configuration, Azo-NZ1 blocked heteromeric α1/ß2/γ2 GABAA receptors, ρ2 GABAA (GABAC ), and α2 glycine receptors, whereas switching the compound into cis-state by UV illumination restored the activity. Azo-NZ1 successfully photomodulated GABAergic currents recorded from dentate gyrus neurons. We demonstrated that in trans-configuration, Azo-NZ1 blocks the Cl-selective ion pore of GABA receptors interacting mainly with the 2' level of the TM2 region. CONCLUSIONS AND IMPLICATIONS: Azo-NZ1 is a soluble light-driven Cl-channel blocker, which allows photo-modulation of the activity induced by anion-selective Cys-loop receptors. Azo-NZ1 is able to control GABAergic postsynaptic currents and provides new opportunities to study inhibitory neurotransmission using patterned illumination.


Assuntos
Encéfalo/efeitos dos fármacos , Canais de Cloreto/antagonistas & inibidores , Antagonistas de Receptores de GABA-A/farmacologia , Luz , Receptores de GABA-A/fisiologia , Animais , Encéfalo/fisiologia , Células CHO , Cricetulus , Feminino , Masculino , Camundongos Endogâmicos ICR , Modelos Moleculares
16.
J Med Chem ; 61(18): 8282-8298, 2018 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-30199253

RESUMO

A new series of derivatives of the PPARα/γ dual agonist 1 allowed us to identify the ligand ( S)-6 as a potent partial agonist of both PPARα and γ subtypes. X-ray studies in PPARγ revealed two different binding modes of ( S)-6 to the canonical site. However, ( S)-6 was also able to bind an alternative site as demonstrated by transactivation assay in the presence of a canonical PPARγ antagonist and supported from docking experiments. This compound did not activate the PPARγ-dependent program of adipocyte differentiation inducing a very less severe lipid accumulation compared to rosiglitazone but increased the insulin-stimulated glucose uptake in 3T3-L1 adipocytes. Finally, ( S)-6 inhibited the Cdk5-mediated phosphorylation of PPARγ at serine 273 that is currently considered the mechanism by which some PPARγ partial agonists exert antidiabetic effects similar to thiazolidinediones, without showing their typical side effects. This is the first PPARα/γ dual agonist reported to show this inhibitory effect representing the potential lead of a new class of drugs for treatment of dyslipidemic type 2 diabetes.


Assuntos
Quinase 5 Dependente de Ciclina/antagonistas & inibidores , Descoberta de Drogas , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , PPAR alfa/antagonistas & inibidores , PPAR gama/agonistas , PPAR gama/metabolismo , Propionatos/química , Propionatos/farmacologia , Células 3T3-L1 , Animais , Cristalografia por Raios X , Quinase 5 Dependente de Ciclina/química , Células Hep G2 , Humanos , Camundongos , Modelos Moleculares , Estrutura Molecular , Fosforilação , Conformação Proteica , Relação Estrutura-Atividade
17.
Nat Commun ; 9(1): 1306, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29610518

RESUMO

Insulin receptor (IR) plays a key role in the control of glucose homeostasis; however, the regulation of its cellular expression remains poorly understood. Here we show that the amount of biologically active IR is regulated by the cleavage of its ectodomain, by the ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), in a glucose concentration-dependent manner. In vivo studies demonstrate that BACE1 regulates the amount of IR and insulin signaling in the liver. During diabetes, BACE1-dependent cleavage of IR is increased and the amount of IR in the liver is reduced, whereas infusion of a BACE1 inhibitor partially restores liver IR. We suggest the potential use of BACE1 inhibitors to enhance insulin signaling during diabetes. Additionally, we show that plasma levels of cleaved IR reflect IR isoform A expression levels in liver tumors, which prompts us to propose that the measurement of circulating cleaved IR may assist hepatic cancer detection and management.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Antígenos CD/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Fígado/metabolismo , Receptor de Insulina/metabolismo , Animais , Diabetes Mellitus/metabolismo , Feminino , Glucose/química , Glicosilação , Células HEK293 , Humanos , Insulina/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias/metabolismo , Domínios Proteicos , Transdução de Sinais
18.
ChemMedChem ; 13(10): 1018-1027, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29465814

RESUMO

The emergence of multidrug-resistant bacteria and pathogens has created an urgent need for the development of new antibiotics. Herein we report our investigations into the broad-spectrum activity of an easily prepared water-soluble polyaminosterol compound, namely claramine A1, against both drug-sensitive and drug-resistant Gram-negative and Gram-positive bacterial strains. We also report its peculiar mechanism of action, which differs from that of all the other well-known classes of antibiotics, toward Gram-negative and Gram-positive bacteria. Given their low cytotoxicity, this class of compounds based on claramine A1 could constitute an effective response to combat the emergence of multidrug-resistant bacteria and nosocomial diseases.


Assuntos
Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Colestanos/química , Colestanos/farmacologia , Espermina/análogos & derivados , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Larva/efeitos dos fármacos , Testes para Micronúcleos , Estrutura Molecular , Mariposas/efeitos dos fármacos , Espermina/química , Espermina/farmacologia , Relação Estrutura-Atividade
19.
ACS Omega ; 3(10): 13263-13266, 2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458044

RESUMO

On the basis of a recent article "Predicting reaction performance in C-N cross-coupling using machine learning" that appeared in Science, we had decided to highlight the way forward for artificial intelligence in chemistry. Synthesis of molecules remains one of the most important challenges in organic chemistry, and the standard approach involved by a chemist to solve a problem is based on experience and constitutes a repetitive, time-consuming task, often resulting in nonoptimized solutions. Thus, considering the recent phenomenal progresses that have been made in machine learning, there is little doubt that these systems, once fully operational in organic chemistry, will dramatically speed up development of new drugs and will constitute the future of chemistry.

20.
Sci Rep ; 7(1): 5777, 2017 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-28720829

RESUMO

PPAR antagonists are ligands that bind their receptor with high affinity without transactivation activity. Recently, they have been demonstrated to maintain insulin-sensitizing and antidiabetic properties, and they serve as an alternative treatment for metabolic diseases. In this work, an affinity-based bioassay was found to be effective for selecting PPAR ligands from the dried extract of an African plant (Diospyros bipindensis). Among the ligands, we identified betulinic acid (BA), a compound already known for its anti-inflammatory, anti-tumour and antidiabetic properties, as a PPARγ and PPARα antagonist. Cell differentiation assays showed that BA inhibits adipogenesis and promotes osteogenesis; either down-regulates or does not affect the expression of a series of adipogenic markers; and up-regulates the expression of osteogenic markers. Moreover, BA increases basal glucose uptake in 3T3-L1 adipocytes. The crystal structure of the complex of BA with PPARγ sheds light, at the molecular level, on the mechanism by which BA antagonizes PPARγ, and indicates a unique binding mode of this antagonist type. The results of this study show that the natural compound BA could be an interesting and safe candidate for the treatment of type 2 diabetes and bone diseases.


Assuntos
Adipogenia/efeitos dos fármacos , Glucose/metabolismo , Osteogênese/efeitos dos fármacos , PPAR gama/antagonistas & inibidores , Triterpenos/farmacologia , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Animais , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/metabolismo , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Cristalografia por Raios X , Glucose/farmacocinética , Células Hep G2 , Humanos , Camundongos , Estrutura Molecular , PPAR gama/química , PPAR gama/metabolismo , Triterpenos Pentacíclicos , Extratos Vegetais/química , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Triterpenos/química , Triterpenos/metabolismo , Ácido Betulínico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...