RESUMO
Modern consumption patterns have led to a surge in waste glass accumulating in municipal landfills, contributing to environmental pollution, especially in countries that do not have well-established recycling standards. While glass itself is 100% recyclable, the logistics and handling involved present significant challenges. Flint and amber-colored glass, often found in high quantities in municipal waste, can serve as valuable sources of raw materials. We propose an affordable route that requires just a thermal treatment of glass waste to obtain glass-based antimicrobial materials. The thermal treatment induces crystallized nanoregions, which are the primary factor responsible for the bactericidal effect of waste glass. As a result, coarse particles of flint waste glass that undergo thermal treatment at 720 °C show superior antimicrobial activity than amber waste glass. Glass-ceramic materials from flint waste glass, obtained by thermal treatment at 720 °C during 2 h, show antimicrobial activity against Escherichia coli after just 30 min of contact time. Laser-induced breakdown spectroscopy (LIBS) was employed to monitor the elemental composition of the glass waste. The obtained glass-ceramic material was structurally characterized by transmission electron microscopy, enabling the confirmation of the presence of nanocrystals embedded within the glass matrix.
RESUMO
BACKGROUND: Colonization with Helicobacter pylori (H. pylori) has a strong correlation with gastric cancer, and the virulence factor CagA is implicated in carcinogenesis. Studies have been conducted using medicinal plants with the aim of eliminating the pathogen; however, the possibility of blocking H. pylori-induced cell differentiation to prevent the onset and/or progression of tumors has not been addressed. This type of study is expensive and time-consuming, requiring in vitro and/or in vivo tests, which can be solved using bioinformatics. Therefore, prospective computational analyses were conducted to assess the feasibility of interaction between phenolic compounds from medicinal plants and the CagA oncoprotein. AIM: To perform a computational prospecting of the interactions between phenolic compounds from medicinal plants and the CagA oncoprotein of H. pylori. METHODS: In this in silico study, the structures of the phenolic compounds (ligands) kaempferol, myricetin, quercetin, ponciretin (flavonoids), and chlorogenic acid (phenolic acid) were selected from the PubChem database. These phenolic compounds were chosen based on previous studies that suggested medicinal plants as non-drug treatments to eliminate H. pylori infection. The three-dimensional structure model of the CagA oncoprotein of H. pylori (receptor) was obtained through molecular modeling using computational tools from the I-Tasser platform, employing the threading methodology. The primary sequence of CagA was sourced from GenBank (BAK52797.1). A screening was conducted to identify binding sites in the structure of the CagA oncoprotein that could potentially interact with the ligands, utilizing the GRaSP online platform. Both the ligands and receptor were prepared for molecular docking using AutoDock Tools 4 (ADT) software, and the simulations were carried out using a combination of ADT and AutoDock Vina v.1.2.0 software. Two sets of simulations were performed: One involving the central region of CagA with phenolic compounds, and another involving the carboxy-terminus region of CagA with phenolic compounds. The receptor-ligand complexes were then analyzed using PyMol and BIOVIA Discovery Studio software. RESULTS: The structure model obtained for the CagA oncoprotein exhibited high quality (C-score = 0.09) and was validated using parameters from the MolProbity platform. The GRaSP online platform identified 24 residues (phenylalanine and leucine) as potential binding sites on the CagA oncoprotein. Molecular docking simulations were conducted with the three-dimensional model of the CagA oncoprotein. No complexes were observed in the simulations between the carboxy-terminus region of CagA and the phenolic compounds; however, all phenolic compounds interacted with the central region of the oncoprotein. Phenolic compounds and CagA exhibited significant affinity energy (-7.9 to -9.1 kcal/mol): CagA/kaempferol formed 28 chemical bonds, CagA/myricetin formed 18 chemical bonds, CagA/quercetin formed 16 chemical bonds, CagA/ponciretin formed 13 chemical bonds, and CagA/chlorogenic acid formed 17 chemical bonds. Although none of the phenolic compounds directly bound to the amino acid residues of the K-Xn-R-X-R membrane binding motif, all of them bound to residues, mostly positively or negatively charged, located near this region. CONCLUSION: In silico, the tested phenolic compounds formed stable complexes with CagA. Therefore, they could be tested in vitro and/or in vivo to validate the findings, and to assess interference in CagA/cellular target interactions and in the oncogenic differentiation of gastric cells.
RESUMO
Consumers are increasingly looking for healthy foods without the addition of synthetic additives. The aim of this study was to evaluate the efficiency of coffee extracts as a natural antioxidant in fresh pork sausage. Firstly, the conditions for obtaining coffee green extracts were optimized (Central Composite Rotatable Design 23, variables: extraction time, ethanol-water ratio, and sample-solvent ratio) in an ultrasound bath (70 °C). The response variables were the bioactive compounds levels and antioxidant activity. Valid models were obtained (p ≤ 0.05, R2 > 0.751), with higher bioactive content and antioxidant activity in the central point region. Extracts of Robusta and Arabica coffee green (RG and AG) and medium roast (RR and AR) obtained, and central point (10 min, an ethanol concentration of 30%, and a sample-solvent ratio of 10 g/100 mL) and optimized (14.2 min, 34.2%, and 5.8 g/100 mL) parameters were characterized. The RG presented a significantly (p ≤ 0.05) higher content of caffeine (3114.8 ± 50.0 and 3148.1 ± 13.5 mg/100 g) and 5-CQA (6417.1 ± 22.0 and 6706.4 ± 23.5 mg/100 g) in both extraction conditions, respectively. The RG and RR coffee presented the highest antioxidant activity. Two concentrations of RG and RR coffee extracts were tested in fresh pork sausage. The Robusta coffee extract presented the highest antioxidant activity in both roasted and green states. However, when applied to a meat product, the extract prepared with RG coffee showed better results, with efficiency in replacing synthetic antioxidants (content of malonaldehyde/kg of sample below 0.696 ± 0.059 in 20 days of storage), without altering the sensory attributes of the product (average scores above 7.16 ± 1.43 for all attributes evaluated). Therefore, the RG coffee extract was a suitable alternative as a natural antioxidant applied to fresh pork sausage.
RESUMO
BACKGROUND: Coronavirus disease 2019 (COVID-19) has demonstrated several clinical manifestations which include not only respiratory system issues but also liver, kidney, and other organ injuries. One of these abnormalities is coagulopathies, including thrombosis and disseminated intravascular coagulation. Because of this, the administration of low molecular weight heparin is required for patients that need to be hospitalized. In addition, Remdesivir is an antiviral that was used against Middle East Acute Respiratory Syndrome, Ebola, Acute Respiratory Syndrome, and other diseases, showing satisfactory results on recovery. Besides, there is evidence suggesting that this medication can provide a better prognosis for patients with COVID-19. AIM: To investigate in silico the interaction between Remdesivir and clotting factors, pursuing a possibility of using it as medicine. METHODS: In this in silico study, the 3D structures of angiotensin-converting enzyme 2 (ACE2), Factor I (fibrinogen), Factor II (prothrombin), Factor III (thromboplastin), Factor V (proaccelerin), Factor VII (proconvertin), Factor VIII (antihemophilic factor A), Factor IX (antihemophilic factor B), Factor X (Stuart-Prower factor), and Factor XI (precursor of thromboplastin (these structures are technically called receptors) were selected from the Protein Data Bank. The structures of the antivirals Remdesivir and Osetalmivir (these structures are called ligands) were selected from the PubChem database, while the structure of Atazanavir was selected from the ZINC database. The software AutoDock Tools (ADT) was used to prepare the receptors for molecular docking. Ions, peptides, water molecules, and other ones were removed from each ligand, and then, hydrogen atoms were added to the structures. The grid box was delimited and calculated using the same software ADT. A physiological environment with pH 7.4 is needed to make the ligands interact with the receptors, and still the software Marvin sketch® (ChemAxon®) was used to forecast the protonation state. To perform molecular docking, ADT and Vina software was connected. Using PyMol® software and Discovery studio® software from BIOVIA, it was possible to analyze the amino acid residues from receptors that were involved in the interactions with the ligands. Ligand tortions, atoms that participated in the interactions, and the type, strength, and duration of the interactions were also analyzed using those software. RESULTS: Molecular docking analysis showed that Remdesivir and ACE2 had an affinity energy of -8.8 kcal/moL, forming a complex with eight hydrogen bonds involving seven atoms of Remdesivir and five amino acid residues of ACE2. Remdesivir and prothrombin had an interaction with six hydrogen bonds involving atoms of the drug and five amino acid residues of the clotting factor. Similar to that, Remdesivir and thromboplastin presented interactions via seven hydrogen bonds involving five atoms of the drug and four residues of the clotting factor. While Remdesivir and Factor V established a complex with seven hydrogen bonds between six antiviral atoms and six amino acid residues from the factor, and Factor VII connected with the drug by four hydrogen bonds, which involved three atoms of the drug and three residues of amino acids of the factor. The complex between Remdesivir and Factor IX formed an interaction via 11 hydrophilic bonds with seven atoms of the drug and seven residues of the clotting factor, plus one electrostatic bond and three hydrophobic interactions. Factor X and Remdesivir had an affinity energy of -9.6 kcal/moL, and the complex presented 10 hydrogen bonds and 14 different hydrophobic interactions which involved nine atoms of the drug and 16 amino acid residues of the clotting factor. The interaction between Remdesivir and Factor XI formed five hydrogen bonds involving five amino acid residues of the clotting factor and five of the antiviral atoms. CONCLUSION: Because of the in silico significant affinity, Remdesivir possibly could act in the severe acute respiratory syndrome coronavirus 2 infection blockade by interacting with ACE2 and concomitantly act in the modulation of the coagulation cascade preventing the hypercoagulable state.
RESUMO
Herein we report the synthesis of transition-metal-free potassium borophosphate glasses and their application as bactericidal and bacteriostatic material. The antimicrobial activity was achieved through a simple change in the molar ratio of boron and phosphorus atoms, making borophosphate glass soluble in water. The glasses were analyzed by X-ray powder diffraction, Raman spectroscopy, laser-induced breakdown spectroscopy, and water absorption. The addition of a boron compound is required to obtain potassium-based phosphate glasses. Moreover, the change in the phosphorus and boron molar ratio (P/B), 2, 1 or 0.5 affects the glass solubilization in water, which increases with the phosphorus content. The glass materials were submitted to tests of biological activity against the bacteria Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. These water-soluble borophosphate glasses were employed in the development of hydrogel formulations using Carbopol®. Phosphorous-rich samples at a concentration of 15 % (w/w) in hydrogel showed better antimicrobial activity against S. aureus and E. coli, when compared to other samples, including commercial alcohol hand sanitizer gel, with an average size of the inhibition halo of 24.02±1.43 and 19.24±1.63mm, respectively.
Assuntos
Anti-Infecciosos , Boro , Escherichia coli , Staphylococcus aureus , Hidrogéis , Fósforo , PotássioRESUMO
BACKGROUND: Inflammatory bowel diseases (IBD) are a worldwide health problem and mainly affect young people, consequently affecting the workforce. Available treatments are often associated with side effects, and new therapeutic options are needed. For centuries, plants have represented important substrates in the field of drug development. Lafoensia pacari (L. pacari) is a plant whose pharmaceutical potential has been described, and may have biological activity relevant to the treatment of IBD symptoms. AIM: To investigate the activity of keto-alcoholic extracts of L. pacari with respect to ameliorating the inflammatory and nociceptive symptoms of acute experimental colitis in mice. METHODS: Keto-alcoholic extracts of L. pacari leaves and bark were administered to male and female Swiss mice weighing 25 g to 30 g (n = 8 male mice and n = 8 female mice). The effect of these extracts was observed in an acetic acid-induced acute experimental model of colitis with regard to antinociception/analgesia and inflammatory tissue damage. Recorded macroscopic indices included the Wallace score and the colon weight obtained using a precision scale. Mechanical hyperalgesia was determined using an electronic analgesimeter. Behavior related to overt pain was determined by quantifying the number of writhing instances within 20 min of administration of acetic acid. Molecular docking was performed using human and murine cyclooxygenase-2 (COX-2) with 3 flavonoids (ellagic acid, kaempferol, and quercetin) on the AutoDock Vina software. Analysis of variance followed by Tukey's posttest was used with P < 0.05 indicating significance. RESULTS: In this murine model of colitis, administration of extracts from L. pacari ameliorated acetic acid-induced writhing and colitis-associated inflammatory pain. These improvements may be attributable to the reduction in edema, inflammation (e.g., ulcers, hyperemia, and bowel wall damage), and the intensity of abdominal hyperalgesia. The keto-alcoholic extracts of L. pacari leaves and bark administered at a dose of either 100 mg/kg or 300 mg/kg significantly reduced the number of writhing events when compared to the negative control (P < 0.05). Additionally, extracts of L. pacari bark also performed better than Dipyrone. Leaf extracts administered at 10 mg/kg, 30 mg/kg, and 100 mg/kg and bark extracts administered at 30 mg/kg significantly reduced or prevented the development of edema in the colon of treated mice, while mesalazine did not. Moreover, using molecular docking, we observed that the flavonoids present in L. pacari extracts bind to COX-2, an event not unique to ellagic acid. CONCLUSION: The results of this study demonstrate a potential novel application of L. pacari extracts for the reduction of inflammation and promotion of antinociception/analgesia as demonstrated by our findings in a murine model of colitis. These findings were also corroborated by in silico analyses, and suggest that L. pacari extracts may be a promising therapeutic agent in the treatment of IBD.
Assuntos
Colite , Doenças Inflamatórias Intestinais , Adolescente , Animais , Humanos , Camundongos , Ácido Acético , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ciclo-Oxigenase 2 , Modelos Animais de Doenças , Edema/tratamento farmacológico , Ácido Elágico/farmacologia , Ácido Elágico/uso terapêutico , Inflamação/tratamento farmacológico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Simulação de Acoplamento Molecular , Dor/tratamento farmacológico , Dor/etiologia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêuticoRESUMO
BACKGROUND: Understanding the humoral response pattern of coronavirus disease 2019 (COVID-19) is one of the essential factors to better characterize the immune memory of patients, which allows understanding the temporality of reinfection, provides answers about the efficacy and durability of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and consequently helps in global public health and vaccination strategy. Among the patients who became infected with SARS-CoV-2, the majority who did not progress to death were those who developed the mild COVID-19, so understanding the pattern and temporality of the antibody response of these patients is certainly relevant. AIM: To investigate the temporal pattern of humoral response of specific immunoglobulin G (IgG) in mild cases of COVID-19. METHODS: Blood samples from 191 COVID-19 real-time reverse transcriptase-polymerase chain reaction (RT-qPCR)-positive volunteers from the municipality of Toledo/ Paraná/Brazil, underwent two distinct serological tests, enzyme-linked immunosorbent assay, and detection of anti-nucleocapsid IgG. Blood samples and clinicoepidemiological data of the volunteers were collected between November 2020 and February 2021. All assays were performed in duplicate and the manufacturers' recommendations were strictly followed. The data were statistically analyzed using multiple logistic regression; the variables were selected by applying the P < 0.05 criterion. RESULTS: Serological tests to detect specific IgG were performed on serum samples from volunteers who were diagnosed as being positive by RT-qPCR for COVID-19 or had disease onset in the time interval from less than 1 mo to 7 mo. The time periods when the highest number of participants with detectable IgG was observed were 1, 2 and 3 mo. It was observed that 9.42% of participants no longer had detectable IgG antibodies 1 mo only after being infected with SARS-CoV-2 and 1.57% were also IgG negative at less than 1 mo. At 5 mo, 3.14% of volunteers were IgG negative, and at 6 or 7 mo, 1 volunteer (0.52%) had no detectable IgG. During the period between diagnosis by RT-qPCR/symptoms onset and the date of collection for the study, no statistical significance was observed for any association analyzed. Moreover, considering the age category between 31 and 59 years as the exposed group, the P value was 0.11 for the category 31 to 59 years and 0.32 for the category 60 years or older, showing that in both age categories there was no association between the pair of variables analyzed. Regarding chronic disease, the exposure group consisted of the participants without any comorbidity, so the P value of 0.07 for the category of those with at least one chronic disease showed no association between the two variables. CONCLUSION: A temporal pattern of IgG response was not observed, but it is suggested that immunological memory is weak and there is no association between IgG production and age or chronic disease in mild COVID-19.
RESUMO
BACKGROUND: Coronavirus disease 19 (COVID-19) has not only been shown to affect the respiratory system, but has also demonstrated variable clinical presentations including gastrointestinal tract disorders. In addition, abnormalities in liver enzymes have been reported indicating hepatic injury. It is known that severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) might infect cells via the viral receptor angiotensin-converting enzyme 2 (ACE2) which is expressed in several organs including the liver. The viral Spike glycoprotein binds to ACE2 and must be cleaved by Furin and Type 2 Serine Protease to enter the cells. After that, the Akt/mTOR signaling pathway is activated and several COVID-19 changes are triggered. AIM: To analyze liver and gastrointestinal symptoms and cell signaling pathways triggered by SARS-CoV-2 infection due to virus-liver interactions in silico. METHODS: In this in silico study, the three-dimensional structures of the Akt, mTORC1 and Furin (receptors) were selected from the Protein Data Bank (PDB) and the structures of inhibitors (ligands) MK-2206, CC-223 and Naphthofluorescein were selected from PubChem and ZINC databases. Ligand files were downloaded as 2D structures and converted to optimized 3D structures using ViewerLite 4.2 software. Marvin Sketch® software was used to calculate prediction of the protonated form of inhibitors in a physiological environment (pH 7.4). AutoDock Tools (ADT) software was used to calculate and delimit the Grid box used in the molecular docking of each structure selected in the PDB. In addition, protonated ligands were prepared for molecular docking using ADT software. Molecular docking was performed using ADT software tools connected to Vina software. Analysis of the amino acid residues involved in ligand interactions, as well as ligand twists, the atoms involved in interactions, bond type and strength of interactions were performed using PyMol® and Discovery Studio® (BIOVIA) software. RESULTS: Molecular docking analysis showed that the mTORC1/CC-223 complex had affinity energy between the receptor and ligand of -7.7 kcal/moL with interactions ranging from 2.7 to 4.99 Å. There were four significant chemical bonds which involved two of five polypeptide chains that formed the FKBP12-Rapamycin-Binding (FRB) domain. The strongest was a hydrogen bond, the only polar interaction, and Van der Waals interactions shown to be present in 12 residues of mTORC1's FRB domain. With regard to the Akt/MK-2206 complex there were three Van der Waals interactions and 12 chemical bonds in which seven residues of Akt were involved with all five rings of the MK-2206 structure. In this way, both ASP 388 and GLN 391 bind to the same MK-2206 ring, the smaller one. However, LYS 386 had four chemical bonds with the inhibitor, one with each structure ring, while LYS 387 binds two distinct rings. One of the MK-2206 inhibitor's rings which binds to LYS 387 also binds simultaneously to ILE 367 and LEU 385 residues, and the fifth ring of the structure was involved in a bond with the ALA 382 residue. The hydrogen bonds were the shortest bonds in the complex (2.61 and 3.08 Å) and all interactions had an affinity energy of -8.8 kcal/moL. The affinity energy in the Furin/Naphhofluorescein complex was -9.8 kcal/moL and involved six interactions ranging from 2.57 to 4.98 Å. Among them, two were polar and the others were non-polar, in addition to twelve more Van der Waals interactions. Two distinct hydrogen bonds were formed between Furin and its inhibitor involving GLN 388 and ALA 532 residues. ALA 532 also binds to two distinct rings of Naphthofluorescein, while TRP 531 residue has two simultaneous bonds with the inhibitor. CONCLUSION: Liver infection and signaling pathways altered by SARS-CoV-2 can be modulated by inhibitors that demonstrate significant interaction affinity with human proteins, which could prevent the development of infection and symptoms.