Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 11(5)2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34065426

RESUMO

Extracorporeal membrane oxygenators are essential medical devices for the treatment of patients with respiratory failure. A promising approach to improve oxygenator performance is the use of microstructured hollow fiber membranes that increase the available gas exchange surface area. However, by altering the traditional circular fiber shape, the risk of low flow, stagnating zones that obstruct mass transfer and encourage thrombus formation, may increase. Finding an optimal fiber shape is therefore a significant task. In this study, experimentally validated computational fluid dynamics simulations were used to investigate transverse flow within fiber packings of circular and microstructured fiber geometries. A numerical model was applied to calculate the local Sherwood number on the membrane surface, allowing for qualitative comparison of gas exchange capacities in low-velocity areas caused by the microstructured geometries. These adverse flow structures lead to a tradeoff between increased surface area and mass transfer. Based on our simulations, we suggest an optimal fiber shape for further investigations that increases potential mass transfer by up to 48% in comparison to the traditional, circular hollow fiber shape.

2.
Membranes (Basel) ; 11(5)2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-34066152

RESUMO

CO2 removal via membrane oxygenators has become an important and reliable clinical technique. Nevertheless, oxygenators must be further optimized to increase CO2 removal performance and to reduce severe side effects. Here, in vitro tests with water can significantly reduce costs and effort during development. However, they must be able to reasonably represent the CO2 removal performance observed with blood. In this study, the deviation between the CO2 removal rate determined in vivo with porcine blood from that determined in vitro with water is quantified. The magnitude of this deviation (approx. 10%) is consistent with results reported in the literature. To better understand the remaining difference in CO2 removal rate and in order to assess the application limits of in vitro water tests, CFD simulations were conducted. They allow to quantify and investigate the influences of the differing fluid properties of blood and water on the CO2 removal rate. The CFD results indicate that the main CO2 transport resistance, the diffusional boundary layer, behaves generally differently in blood and water. Hence, studies of the CO2 boundary layer should be preferably conducted with blood. In contrast, water tests can be considered suitable for reliable determination of the total CO2 removal performance of oxygenators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...