Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 12(7)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37507861

RESUMO

Plants continuously interact with fungi, some of which, such as Fusarium oxysporum, are lethal, leading to reduced crop yields. Recently, nitric oxide (NO) has been found to play a regulatory role in plant responses to F. oxysporum, although the underlying mechanisms involved are poorly understood. In this study, we show that Arabidopsis mutants with altered levels of phytoglobin 1 (Glb1) have a higher survival rate than wild type (WT) after infection with F. oxysporum, although all the genotypes analyzed exhibited a similar fungal burden. None of the defense responses that were analyzed in Glb1 lines, such as phenols, iron metabolism, peroxidase activity, or reactive oxygen species (ROS) production, appear to explain their higher survival rates. However, the early induction of the PR genes may be one of the reasons for the observed survival rate of Glb1 lines infected with F. oxysporum. Furthermore, while PR1 expression was induced in Glb1 lines very early on the response to F. oxysporum, this induction was not observed in WT plants.

2.
Front Plant Sci ; 13: 930721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36082297

RESUMO

Reactive oxygen species (ROS) act as secondary messengers that can be sensed by specific redox-sensitive proteins responsible for the activation of signal transduction culminating in altered gene expression. The subcellular site, in which modifications in the ROS/oxidation state occur, can also act as a specific cellular redox network signal. The chemical identity of ROS and their subcellular origin is actually a specific imprint on the transcriptome response. In recent years, a number of transcriptomic studies related to altered ROS metabolism in plant peroxisomes have been carried out. In this study, we conducted a meta-analysis of these transcriptomic findings to identify common transcriptional footprints for plant peroxisomal-dependent signaling at early and later time points. These footprints highlight the regulation of various metabolic pathways and gene families, which are also found in plant responses to several abiotic stresses. Major peroxisomal-dependent genes are associated with protein and endoplasmic reticulum (ER) protection at later stages of stress while, at earlier stages, these genes are related to hormone biosynthesis and signaling regulation. Furthermore, in silico analyses allowed us to assign human orthologs to some of the peroxisomal-dependent proteins, which are mainly associated with different cancer pathologies. Peroxisomal footprints provide a valuable resource for assessing and supporting key peroxisomal functions in cellular metabolism under control and stress conditions across species.

3.
J Exp Bot ; 72(16): 5857-5875, 2021 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-34111283

RESUMO

Complex signalling pathways are involved in plant protection against single and combined stresses. Plants are able to coordinate genome-wide transcriptional reprogramming and display a unique programme of transcriptional responses to a combination of stresses that differs from the response to single stresses. However, a significant overlap between pathways and some defence genes in the form of shared and general stress-responsive genes appears to be commonly involved in responses to multiple biotic and abiotic stresses. Reactive oxygen and nitrogen species, as well as redox signals, are key molecules involved at the crossroads of the perception of different stress factors and the regulation of both specific and general plant responses to biotic and abiotic stresses. In this review, we focus on crosstalk between plant responses to biotic and abiotic stresses, in addition to possible plant protection against pathogens caused by previous abiotic stress. Bioinformatic analyses of transcriptome data from cadmium- and fungal pathogen-treated plants focusing on redox gene ontology categories were carried out to gain a better understanding of common plant responses to abiotic and biotic stresses. The role of reactive oxygen and nitrogen species in the complex network involved in plant responses to changes in their environment is also discussed.


Assuntos
Cádmio , Regulação da Expressão Gênica de Plantas , Cádmio/toxicidade , Oxirredução , Plantas/genética , Estresse Fisiológico
4.
J Exp Bot ; 70(17): 4477-4488, 2019 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-31125416

RESUMO

Anthropogenic activities, such as industrial processes, mining, and agriculture, lead to an increase in heavy metal concentrations in soil, water, and air. Given their stability in the environment, heavy metals are difficult to eliminate and can constitute a human health risk by entering the food chain through uptake by crop plants. An excess of heavy metals is toxic for plants, which have various mechanisms to prevent their accumulation. However, once metals enter the plant, oxidative damage sometimes occurs, which can lead to plant death. Initial production of nitric oxide (NO), which may play a role in plant perception, signalling, and stress acclimation, has been shown to protect against heavy metals. Very little is known about NO-dependent mechanisms downstream from signalling pathways in plant responses to heavy metal stress. In this review, using bioinformatic techniques, we analyse studies of the involvement of NO in plant responses to heavy metal stress, its possible role as a cytoprotective molecule, and its relationship with reactive oxygen species. Some conclusions are drawn and future research perspectives are outlined to further elucidate the signalling mechanisms underlying the role of NO in plant responses to heavy metal stress.


Assuntos
Metais Pesados/metabolismo , Óxido Nítrico/metabolismo , Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Poluentes do Solo/metabolismo , Biologia Computacional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...