Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS ES T Water ; 3(5): 1305-1313, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37201128

RESUMO

Robustness is the ability of a drinking water treatment plant (DWTP) to achieve the desired finished water quality even during adverse raw water quality events. Increasing the robustness of a DWTP is beneficial for regular operations and especially for extreme weather adaptation. This paper proposes three robustness frameworks: (a) a general framework outlining the main steps and methodology for systematic assessment and improvement of the robustness of a DWTP, (b) a parameter-specific framework applying the general framework to a water quality parameter (WQP), and (c) a plant-specific framework applying the parameter-specific framework to a DWTP. A parameter-specific framework for turbidity is presented using the turbidity robustness index (TRI) for evaluation and applied to a full-scale DWTP in Ontario, Canada. This evaluation was conducted with historical plant data, as well as bench-scale experimental data simulating extremely high-turbidity scenarios. The framework application is capable of identifying (i) less robust processes which are likely to be vulnerable during climate extremes, (ii) operational responses to increasing short-term robustness, and (iii) a critical WQP threshold beyond which capital improvements are necessary. The proposed framework provides insights into the current state of robustness of a DWTP and serves as a tool for climate adaptation planning.

2.
ACS ES T Water ; 2(7): 1195-1205, 2022 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-35846407

RESUMO

The removal of three perfluorinated carboxylic acids (PFCAs)-PFHpA, PFOA, and PFNA-in ultrapure and river water was evaluated using two anion-exchange resins-previously unreported macroporous polystyrenic A-500P and a more widely studied macroporous polyacrylic A-860. Both resins had similar properties, allowing direct comparison of PFCA removal performance between the two resin structures/matrices. This study also presents a new gas chromatography-mass spectrometry (GC/MS) method developed for PFCA analysis in water. In ultrapure water, A-500P exhibited higher removal capacity and faster removal compared to A-860, suggesting greater effectiveness of the polystyrenic structure compared to the polyacrylic structure. In the Grand River water, the target PFCAs were well removed by A-500P but not A-860. However, both resins achieved similarly high overall reductions of dissolved organic carbon (∼75%), suggesting, later confirmed in ultrapure water experiments, that inorganic anions (sulfate particularly) were the dominant competitors for the A-860 resin. The uncharged styrenic and acrylic beads (base materials) of the two tested resins were unable to remove PFOA, implying that the dominant removal mechanism involves charge interactions between the negatively charged PFCA and the positively charged anion-exchange functional groups.

3.
Water Res ; 195: 116955, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33714013

RESUMO

Sodium silicate is thought to mitigate lead release via two mechanisms: by increasing pH and by forming a protective silica film. A pilot-scale study using an excavated lead service line (LSL) fed with water from a Great Lakes source was undertaken to: (1) clearly distinguish the pH effect and the silica effect; (2) compare sodium silicate to orthophosphate and pH adjustment; (3) determine the nature of silica accumulation in the pipe scale. The LSL was cut into segments and acclimated with water at pH 7.1. Median dissolved lead was 197 µg/L in the last 8 weeks of acclimation and dropped to 16 µg/L, 54 µg/L, and 85 µg/L following treatment with orthophosphate (dose: 2.6 mg-PO4/L, pH: 7.9), pH adjustment (pH: 7.9) and sodium silicate (dose: 20 mg-SiO2/L, pH: 7.9), respectively. When silica dose was increased from 20 mg-SiO2/L to 25 mg-SiO2/L (pH: 8.1), lead release destabilized and increased (median dissolved lead: 141 µg/L) due to formation of colloidal dispersions composed mainly of lead- and aluminum-rich phases as detected by field flow fractionation used with inductively coupled plasma mass spectrometry. Si was present in the scale at a maximum of 2.2 atomic % after 17 weeks of silica dosing at 20 mg- SiO2/L. Under the conditions tested, sodium silicate did not offer any benefits for reducing lead release from this LSL other than increasing pH. However, sodium silicate resulted in lower levels of biofilm accumulation on pipe walls, as measured by heterotrophic plate counts, when compared to orthophosphate.


Assuntos
Poluentes Químicos da Água , Abastecimento de Água , Concentração de Íons de Hidrogênio , Chumbo , Fosfatos , Silicatos , Dióxido de Silício , Poluentes Químicos da Água/análise
4.
Water Res ; 167: 115103, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31581035

RESUMO

Biofiltration has been observed to increase or decrease the concentrations of N-nitrosodimethylamine (NDMA) precursors in the effluents of full-scale drinking water facilities, but these changes have been inconsistent over time. Bench-scale tests comparing biofiltration columns side-by-side exposed to different conditions were employed to characterize factors associated with changes in NDMA precursor concentrations, as measured by application of chloramines under uniform formation conditions (UFC). Side-by-side comparisons of biofiltration media from different facilities fed with water from each of these facilities demonstrated that differences in source water quality were far more important than any original differences in the microbial communities on the biofiltration media for determining whether NDMA precursor concentrations increased, decreased or remained constant across biofilters. Additional tests involving spiking of specific constituents hypothesized to promote increases in NDMA precursor concentrations demonstrated that inorganic nitrogen species associated with nitrification, including ammonia, hydroxylamine and chloramines, and biotransformation of known precursors (i.e., municipal wastewater and the cationic polymer, polyDADMAC) to more potent forms were not important. Biotransformation of uncharacterized components of source waters determined whether NDMA precursor concentrations increased or decreased across biofilters. These uncharacterized source water component concentrations varied temporally and across locations. Where biotransformation of source water precursors increased NDMA precursor concentrations, ∼30-60% of the levels observed in column effluents fed with biofiltration influent water remained associated with the media and could be rinsed therefrom in either the dissolved or particulate form. Ozone pre-treatment significantly reduced NDMA precursor concentrations at one facility, suggesting that pre-oxidation could be an effective technique to mitigate the increase in NDMA precursor concentrations during biofiltration. Biofiltration decreased the concentrations of halogenated disinfection byproduct precursors.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Dimetilnitrosamina , Águas Residuárias
5.
Toxins (Basel) ; 11(5)2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108999

RESUMO

Drinking water treatment plants throughout the world are increasingly facing the presence of toxic cyanobacteria in their source waters. During treatment, the oxidation of cyanobacteria changes cell morphology and can potentially lyse cells, releasing intracellular metabolites. In this study, a combination of techniques was applied to better understand the effect of oxidation with chlorine, ozone, potassium permanganate, and hydrogen peroxide on two cell cultures (Microcystis, Dolichospermum) in Lake Champlain water. The discrepancy observed between flow cytometry cell viability and cell count numbers was more pronounced for hydrogen peroxide and potassium permanganate than ozone and chlorine. Liquid chromatography with organic carbon and nitrogen detection was applied to monitor the changes in dissolved organic matter fractions following oxidation. Increases in the biopolymer fraction after oxidation with chlorine and ozone were attributed to the release of intracellular algal organic matter and/or fragmentation of the cell membrane. A novel technique, Enhanced Darkfield Microscopy with Hyperspectral Imaging, was applied to chlorinated and ozonated samples. Significant changes in the peak maxima and number of peaks were observed for the cell walls post-oxidation, but this effect was muted for the cell-bound material, which remained relatively unaltered.


Assuntos
Cianobactérias/efeitos dos fármacos , Oxidantes/farmacologia , Carga Bacteriana , Cloro/farmacologia , Cianobactérias/citologia , Citometria de Fluxo , Peróxido de Hidrogênio/farmacologia , Lagos/microbiologia , Microscopia , Oxirredução , Ozônio/farmacologia , Permanganato de Potássio/farmacologia , Análise Espectral , Poluentes da Água
6.
J Hazard Mater ; 360: 349-355, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30125752

RESUMO

This study evaluated the adsorption capacity and rate constants for 9 micropollutants (MP) on fresh and aged magnetic powdered activated carbon (MPAC) as a magnetically separable alternative to conventional PAC for drinking water treatment. MPAC with mass fractions of 10%, 38% and 54% maghemite nanoparticles were compared to bare PAC and pure maghemite in batch adsorption experiments. Pure maghemite alone did not adsorb significant amounts of MP and when normalized to PAC content, no significant differences of MP adsorption between MPAC and PAC were observed. Freundlich constants KF (normalized to PAC content) ranged between 2.3-37 µg/mg (L/µg)1/n for all MP and adsorbents. Pseudo-second order rate constants for MP decreased with increasing maghemite content ranging between 0.2-2.7 mg/µg/min for bare PAC and 0.02-2.19 mg/µg/min for MPAC. Residual adsorption capacities of 90-days old colonized adsorbents were 10 times lower than for fresh adsorbent. At typical concentrations of 3.5 g colonized adsorbent/L found inside reactors, kinetics were still fast and removals of all MP except sulfamethoxazole exceeded 90% within 5 min.

7.
J Microbiol Methods ; 130: 154-163, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27638413

RESUMO

Flow cytometry is an efficient monitoring tool for rapid cell counting, and can be applied to research on water quality and treatment. In this study, a method that employs flow cytometry and a natural microbial inoculum to determine assimilable organic carbon (AOC) was adapted for use with challenging surface waters that have a high organic and particle content, and subsequently applied in a long term river water study. AOC method optimization showed that river water bacteria could pass through a 0.2µm membrane filter, and therefore membrane filtration combined with heat treatment was required for sample sterilization. Preparation of the natural river inoculum with an acceptable yield value could only be achieved when grown using the natural water source, since growth was limited on different types of inorganic minimal media and in natural spring water. The resulting flow cytometry AOC method was reliable and reproducible, and results were comparable to the standard plate count AOC method. Size exclusion chromatography showed that both high and low molecular weight organic matter fractions were utilized by the natural AOC inoculum. Flow cytometry was used to measure both AOC levels and total cell counts in a long term study to monitor the water quality of a river which was used as a drinking water source. The method could distinguish between high nucleic acid (HNA) and low nucleic acid (LNA) groups of bacteria, and HNA bacteria were found to respond faster than LNA bacteria to seasonal changes in nutrients and water temperature.


Assuntos
Bactérias/metabolismo , Carbono/metabolismo , Monitoramento Ambiental/métodos , Citometria de Fluxo/métodos , Microbiota , Microbiologia da Água , Água/química , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Biopolímeros/análise , Contagem de Células/métodos , Cromatografia em Gel , Filtração , Citometria de Fluxo/normas , Fluorescência , Água Doce/análise , Peso Molecular , Ácidos Nucleicos/análise , Ontário , Rios/microbiologia , Estações do Ano , Esterilização , Temperatura , Purificação da Água/métodos , Qualidade da Água
8.
Water Res ; 104: 361-370, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27572138

RESUMO

To better understand biofiltration, concentration profiles of various natural organic matter (NOM) components throughout a pilot-scale drinking water biofilter were investigated using liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation and emission matrices (FEEM). Over a 2 month period, water samples were collected from six ports at different biofilter media depths. Results showed substantial removal of biopolymers (i.e. high molecular weight (MW) NOM components as characterized by LC-OCD) and FEEM protein-like materials, but low removal of humic substances, building blocks and low MW neutrals and low MW acids. For the first time, relative biodegradability of different NOM components characterized by LC-OCD and FEEM approaches were investigated across the entire MW range and for different fluorophore compositions, in addition to establishing the biodegradation kinetics. The removal kinetics for FEEM protein-like materials were different than for the LC-OCD-based biopolymers, illustrating the complementary nature of the LC-OCD and FEEM approaches. LC-OCD biopolymers (both organic carbon and organic nitrogen) and FEEM protein-like materials were shown to follow either first or second order biodegradation kinetics. Due to the low percent removal and small number of data points, the performance of three kinetic models was not distinguishable for humic substances. Pre-filtration of samples for FEEM analyses affected the removal behaviours and/or kinetics especially of protein-like materials which was attributed to the removal of the colloidal/particulate materials.


Assuntos
Água Potável , Purificação da Água , Filtração , Substâncias Húmicas , Cinética , Compostos Orgânicos
9.
Chemosphere ; 138: 1-9, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26005810

RESUMO

Quantitative structure-property relationship (QSPR) models which predict hydroxyl radical rate constants (kOH) for a wide range of emerging micropollutants are a cost effective approach to assess the susceptibility of these contaminants to advanced oxidation processes (AOPs). A QSPR model for the prediction of kOH of emerging micropollutants from their physico-chemical properties was developed with special attention to model validation, applicability domain and mechanistic interpretation. In this study, 118 emerging micropollutants including those experimentally determined by the author and data collected from the literature, were randomly divided into the training set (n=89) and validation set (n=29). 951 DRAGON molecular descriptors were calculated for model development. The QSPR model was calibrated by applying forward multiple linear regression to the training set. As a result, 7 DRAGON descriptors were found to be important in predicting the kOH values which related to the electronegativity, polarizability, and double bonds, etc. of the compounds. With outliers identified and removed, the final model fits the training set very well and shows good robustness and internal predictivity. The model was then externally validated with the validation set showing good predictive power. The applicability domain of the model was also assessed using the Williams plot approach. Overall, the developed QSPR model provides a valuable tool for an initial assessment of the susceptibility of micropollutants to AOPs.


Assuntos
Radical Hidroxila/química , Modelos Químicos , Poluentes Químicos da Água/química , Modelos Lineares , Oxirredução , Relação Quantitativa Estrutura-Atividade
10.
J Water Health ; 12(4): 601-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25473970

RESUMO

Anatoxin-a (ANTX-a) is a potent alkaloid neurotoxin, produced by several species of cyanobacteria and detected throughout the world. The presence of cyanotoxins, including ANTX-a, in drinking water sources is a potential risk to public health. This article presents a thorough examination of the cumulative body of research on the use of drinking water treatment technologies for extracellular ANTX-a removal, focusing on providing an analysis of the specific operating parameters required for effective treatment and on compiling a series of best-practice recommendations for owners and operators of systems impacted by this cyanotoxin. Of the oxidants used in drinking water treatment, chlorine-based processes (chlorine, chloramines and chlorine dioxide) have been shown to be ineffective for ANTX-a treatment, while ozone, advanced oxidation processes and permanganate can be successful. High-pressure membrane filtration (nanofiltration and reverse osmosis) is likely effective, while adsorption and biofiltration may be effective but further investigation into the implementation of these processes is necessary. Given the lack of full-scale verification, a multiple-barrier approach is recommended, employing a combination of chemical and non-chemical processes.


Assuntos
Água Potável/microbiologia , Tropanos/química , Poluentes Químicos da Água/química , Purificação da Água/métodos , Toxinas de Cianobactérias , Água Potável/análise , Tropanos/análise , Poluentes Químicos da Água/análise
11.
Water Environ Res ; 86(7): 654-62, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25112033

RESUMO

Aqueous chlorination kinetics of the lipid regulator gemfibrozil and the formation of reaction products were investigated in deionized water over the pH range 3 to 9, and in two wastewater matrices. Chlorine oxidation of gemfibrozil was found to be highly dependent on pH. No statistically significant degradation of gemfibrozil was observed at pH values greater than 7. Gemfibrozil oxidation between pH 4 and 7 was best represented by first order kinetics. At pH 3, formation of three reaction products was observed. 4'-C1Gem was the only reaction product formed from pH 4-7 and was modeled with zero order kinetics. Chlorine oxidation of gemfibrozil in two wastewater matrices followed second order kinetics. 4'-C1Gem was only formed in wastewater with pH below 7. Deionized water rate kinetic models were applied to two wastewater effluents with gemfibrozil concentrations reported in literature in order to calculate potential mass loading rates of 4'C1Gem to the receiving water.


Assuntos
Genfibrozila/química , Hipolipemiantes/química , Cloro/química , Halogenação , Poluentes Químicos da Água/química , Purificação da Água/métodos
12.
Water Res ; 61: 297-307, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24967952

RESUMO

The effect of membrane fouling on the removal of enteric virus surrogates MS2 and φX174 bacteriophage by an ultrafiltration membrane was assessed under simulated full-scale drinking water treatment operating conditions. Filtration experiments of up to 8 days using either river or lake water ascertained how the membrane fouling layer affected virus removal. Organic carbon fractionation techniques identified potential foulants, including biopolymers, in the feed water and in the permeate. Hydraulically irreversible fouling could greatly improve the removal of both viruses at moderate and severe fouling conditions by up to 2.5 logs. Hydraulically reversible fouling increased virus removal only slightly, and increased removal of >0.5 log for both phage were only obtained under severe fouling conditions. The increase in virus removal due to irreversible and reversible fouling differed between the two water sources. As the degree of fouling increased, differences between the removal of the two phage decreased. Maintenance cleaning partially removed membrane foulants, however virus removal following maintenance cleaning was lower than that of the fouled membrane, it remained higher than that of the clean membrane.


Assuntos
Bacteriófago phi X 174/isolamento & purificação , Incrustação Biológica , Água Potável/virologia , Filtração/métodos , Levivirus/isolamento & purificação , Purificação da Água/métodos , Cromatografia Líquida , Lagos/virologia , Rios/virologia , Ultrafiltração/métodos
13.
Water Res ; 48: 508-18, 2014 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-24188578

RESUMO

A pilot-scale investigation of the performance of biofiltration as a pre-treatment to ultrafiltration for drinking water treatment was conducted between 2008 and 2010. The objective of this study was to further understand the fouling behaviour of ultrafiltration at pilot scale and assess the utility of different foulant monitoring tools. Various fractions of natural organic matter (NOM) and colloidal/particulate matter of raw water, biofilter effluents, and membrane permeate were characterized by employing two advanced NOM characterization techniques: liquid chromatography - organic carbon detection (LC-OCD) and fluorescence excitation-emission matrices (FEEM) combined with principal component analysis (PCA). A framework of fouling rate quantification and classification was also developed and utilized in this study. In cases such as the present one where raw water quality and therefore fouling potential vary substantially, such classification can be considered essential for proper data interpretation. The individual and combined contributions of various NOM fractions and colloidal/particulate matter to hydraulically reversible and irreversible fouling were investigated using various multivariate statistical analysis techniques. Protein-like substances and biopolymers were identified as major contributors to both reversible and irreversible fouling, whereas colloidal/particulate matter can alleviate the extent of irreversible fouling. Humic-like substances contributed little to either reversible or irreversible fouling at low level fouling rates. The complementary nature of FEEM-PCA and LC-OCD for assessing the fouling potential of complex water matrices was also illustrated by this pilot-scale study.


Assuntos
Água Potável/química , Membranas Artificiais , Ultrafiltração/instrumentação , Cromatografia Líquida , Projetos Piloto
14.
Water Res ; 50: 318-40, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24216232

RESUMO

This article reviews perfluoroalkyl and polyfluoroalkyl substance (PFAS) characteristics, their occurrence in surface water, and their fate in drinking water treatment processes. PFASs have been detected globally in the aquatic environment including drinking water at trace concentrations and due, in part, to their persistence in human tissue some are being investigated for regulation. They are aliphatic compounds containing saturated carbon-fluorine bonds and are resistant to chemical, physical, and biological degradation. Functional groups, carbon chain length, and hydrophilicity/hydrophobicity are some of the important structural properties of PFASs that affect their fate during drinking water treatment. Full-scale drinking water treatment plant occurrence data indicate that PFASs, if present in raw water, are not substantially removed by most drinking water treatment processes including coagulation, flocculation, sedimentation, filtration, biofiltration, oxidation (chlorination, ozonation, AOPs), UV irradiation, and low pressure membranes. Early observations suggest that activated carbon adsorption, ion exchange, and high pressure membrane filtration may be effective in controlling these contaminants. However, branched isomers and the increasingly used shorter chain PFAS replacement products may be problematic as it pertains to the accurate assessment of PFAS behaviour through drinking water treatment processes since only limited information is available for these PFASs.


Assuntos
Ácidos Alcanossulfônicos/isolamento & purificação , Água Potável/química , Fluorocarbonos/isolamento & purificação , Purificação da Água/métodos , Ácidos Alcanossulfônicos/química , Biodegradação Ambiental , Fluorocarbonos/química , Humanos
15.
Water Res ; 46(19): 6519-30, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-23079129

RESUMO

Second-order reaction rate constants of micropollutants with ozone (k(O3)) and hydroxyl radicals (k(OH)) are essential for evaluating their removal efficiencies from water during ozonation and advanced oxidation processes. Kinetic data are unavailable for many of the emerging micropollutants. Twenty-four micropollutants with very diverse structures and applications including endocrine disrupting compounds, pharmaceuticals, and personal care products were selected, and their k(O3) and k(OH) values were determined using bench-scale reactors (at pH 7 and T = 20 °C). Reactions with molecular ozone are highly selective as indicated by their k(O3) values ranging from 10(-2)-10(7) M(-1) s(-1). The general trend of ozone reactivity can be explained by micropollutant structures in conjunction with the electrophilic nature of ozone reactions. All of the studied compounds are highly reactive with hydroxyl radicals as shown by their high k(OH) values (10(8)-10(10) M(-1) s(-1)) even though they are structurally very diverse. For compounds with a low reactivity toward ozone, hydroxyl radical based treatment such as O(3)/H(2)O(2) or UV/H(2)O(2) is a viable alternative. This study contributed to filling the data gap pertaining kinetic data of organic micropollutants while confirming results reported in the literature where available.


Assuntos
Ozônio/química , Poluentes Químicos da Água/química , Aminas/química , Compostos de Anilina/química , Anisóis/química , Disruptores Endócrinos/química , Produtos Domésticos , Peróxido de Hidrogênio/química , Concentração de Íons de Hidrogênio , Radical Hidroxila/química , Cinética , Oxirredução , Preparações Farmacêuticas/química , Fenóis/química , Ácidos Ftálicos/química , Hidrocarbonetos Policíclicos Aromáticos/química , Eliminação de Resíduos Líquidos/métodos , Purificação da Água/métodos
16.
Sci Total Environ ; 414: 653-63, 2012 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-22142647

RESUMO

Micropollutants remain of concern in drinking water, and there is a broad interest in the ability of different treatment processes to remove these compounds. To gain a better understanding of treatment effectiveness for structurally diverse compounds and to be cost effective, it is necessary to select a small set of representative micropollutants for experimental studies. Unlike other approaches to-date, in this research micropollutants were systematically selected based solely on their physico-chemical and structural properties that are important in individual water treatment processes. This was accomplished by linking underlying principles of treatment processes such as coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration to compound characteristics and corresponding molecular descriptors. A systematic statistical approach not commonly used in water treatment was then applied to a compound pool of 182 micropollutants (identified from the literature) and their relevant calculated molecular descriptors. Principal component analysis (PCA) was used to summarize the information residing in this large dataset. D-optimal onion design was then applied to the PCA results to select structurally representative compounds that could be used in experimental treatment studies. To demonstrate the applicability and flexibility of this selection approach, two sets of 22 representative micropollutants are presented. Compounds in the first set are representative when studying a range of water treatment processes (coagulation/flocculation, oxidation, activated carbon adsorption, and membrane filtration), whereas the second set shows representative compounds for ozonation and advanced oxidation studies. Overall, selected micropollutants in both lists are structurally diverse, have wide-ranging physico-chemical properties and cover a large spectrum of applications. The systematic compound selection approach presented here can also be adjusted to fit individual research needs with respect to type of micropollutants, treatment processes and number of compounds selected.


Assuntos
Água Potável/química , Poluentes Químicos da Água/análise , Purificação da Água/métodos , Adsorção , Bases de Dados Factuais , Filtração , Floculação , Oxirredução , Ozônio , Análise de Componente Principal , Poluentes Químicos da Água/química , Poluentes Químicos da Água/classificação
17.
Water Res ; 45(16): 5161-70, 2011 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21835423

RESUMO

With the increased use of membranes in drinking water treatment, fouling--particularly the hydraulically irreversible type--remains the main operating issue that hinders performance and increases operational costs. The main challenge in assessing fouling potential of feed water is to accurately detect and quantify feed water constituents responsible for membrane fouling. Utilizing fluorescence excitation-emission matrices (EEM), protein-like substances, humic and fulvic acids, and particulate/colloidal matter can be detected with high sensitivity in surface waters. The application of principal component analysis to fluorescence EEMs allowed estimation of the impact of surface water constituents on reversible and irreversible membrane fouling. This technique was applied to experimental data from a two year bench-scale study that included thirteen experiments investigating the fouling potential of Grand River water (Ontario, Canada) and the effect of biofiltration pre-treatment on the level of foulants during ultrafiltration (UF). Results showed that, although the content of protein-like substances in this membrane feed water (=biofiltered natural water) was much lower than commonly found in wastewater applications, the content of protein-like substances was still highly correlated with irreversible fouling of the UF membrane. In addition, there is evidence that protein-like substances and particulate/colloidal matter formed a combined fouling layer, which contributed to both reversible and irreversible fouling. It is suggested that fouling transitions from a reversible to an irreversible regime depending on feed composition and operating time. Direct biofiltration without prior coagulant addition reduced the protein-like content of the membrane feed water which in turn reduced the irreversible fouling potential for UF membranes. Biofilters also decreased reversible fouling, and for both types of fouling higher biofilter contact times were beneficial.


Assuntos
Filtração/métodos , Membranas Artificiais , Análise de Componente Principal , Abastecimento de Água , Coloides , Fluorescência , Pressão
18.
Water Res ; 44(1): 185-94, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19818986

RESUMO

The identification of key foulants and the provision of early warning of high fouling events for drinking water treatment membrane processes is crucial for the development of effective countermeasures to membrane fouling, such as pretreatment. Principal foulants include organic, colloidal and particulate matter present in the membrane feed water. In this research, principal component analysis (PCA) of fluorescence excitation-emission matrices (EEMs) was identified as a viable tool for monitoring the performance of pre-treatment stages (in this case biological filtration), as well as ultrafiltration (UF) and nanofiltration (NF) membrane systems. In addition, fluorescence EEM-based principal component (PC) score plots, generated using the fluorescence EEMs obtained after just 1hour of UF or NF operation, could be related to high fouling events likely caused by elevated levels of particulate/colloid-like material in the biofilter effluents. The fluorescence EEM-based PCA approach presented here is sensitive enough to be used at low organic carbon levels and has potential as an early detection method to identify high fouling events, allowing appropriate operational countermeasures to be taken.


Assuntos
Incrustação Biológica , Análise de Componente Principal/métodos , Espectrometria de Fluorescência/métodos , Purificação da Água/métodos , Ultrafiltração
19.
Water Res ; 43(18): 4559-68, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19716151

RESUMO

A commercial poly(vinylidene fluoride) flat sheet membrane was modified by surface coating with a dilute poly(vinyl alcohol) (PVA) aqueous solution followed by solid-vapor interfacial crosslinking. The resulting PVA layer increased membrane smoothness and hydrophilicity and resulted in comparable pure water permeation between the modified and unmodified membranes. Fouling tests using a 5 mg/L protein solution showed that a short period of coating and crosslinking improved the anti-fouling performance. After 18 h ultrafiltration of a surface water with a TOC of approximately 7 mg C/L, the flux of the modified membrane was twice as high as that of the unmodified membrane. The improved fouling resistance of the modified membrane was related to the membrane physiochemical properties, which were confirmed by pure water permeation, X-ray photoelectron spectroscopy, and contact angle, zeta potential and roughness measurements.


Assuntos
Membranas Artificiais , Polímeros/química , Álcool de Polivinil/química , Compostos de Vinila/química , Purificação da Água/métodos , Microscopia de Força Atômica , Permeabilidade , Espectroscopia Fotoeletrônica , Porosidade , Fatores de Tempo , Purificação da Água/instrumentação , Abastecimento de Água/análise
20.
Environ Sci Technol ; 43(10): 3878-84, 2009 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19544902

RESUMO

Although the use of ultrafiltration membranes in drinking water treatment is increasing, fouling remains a major challenge. The objective of this study was to evaluate rapid biological filtration (without coagulant addition) as a pretreatmentto reduce fouling. Surface water was first passed through a pilot scale roughing filter followed by two parallel anthracite/sand biofilters having different contact times, before being fed to the ultrafiltration membrane. As a chemical-free pretreatment, this novel application of biofiltration removes biopolymers (polysaccharides and proteins) that are the most important component of organic matter for fouling, as well as removing particulate matter. Biopolymer removal was influenced by contact time and temperature. The biofilter with the longer contact time led to greater reductions in both hydraulically reversible and irreversible fouling. The extent of hydraulically reversible fouling was related to the membrane influent biopolymer concentration, but the level of hydraulically irreversible fouling was not, indicating that the composition of the biopolymer fraction may have been important. Biofiltration as a simple and robust pretreatment may be particularly suited for small drinking water systems.


Assuntos
Filtração/métodos , Filtração/normas , Membranas Artificiais , Pressão , Abastecimento de Água , Trifosfato de Adenosina/análise , Bactérias/citologia , Biomassa , Canadá , Contagem de Colônia Microbiana , Substâncias Húmicas , Compostos Orgânicos/química , Polímeros , Rios/química , Ultrafiltração , Água/normas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA