Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Exp Biol Med (Maywood) ; 246(10): 1177-1183, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33535809

RESUMO

Osteoblasts play an important role in bone regeneration and repair. The hypoxia condition in bone occurs when bone undergoes fracture, and this will trigger a series of biochemical and mechanical changes to enable bone repair. Hence, it is interesting to observe the metabolites and metabolism changes when osteoblasts are exposed to hypoxic condition. This study has looked into the response of human osteoblast hFOB 1.19 under normoxic and hypoxic conditions by observing the cell growth and utilization of metabolites via Phenotype MicroArrays™ under these two different oxygen concentrations. The cell growth of hFOB 1.19 under hypoxic condition showed better growth compared to hFOB 1.19 under normal condition. In this study, osteoblast used glycolysis as the main pathway to produce energy as hFOB 1.19 in both hypoxic and normoxic conditions showed cell growth in well containing dextrin, glycogen, maltotriose, D-maltose, D-glucose-6-phospate, D-glucose, D-mannose, D-Turanose, D-fructose-6-phosphate, D-galactose, uridine, adenosine, inosine and α-keto-glutaric acid. In hypoxia, the cells have utilized additional metabolites such as α-D-glucose-1-phosphate and D-fructose, indicating possible activation of glycogen synthesis and glycogenolysis to metabolize α-D-glucose-1-phosphate. Meanwhile, during normoxia, D-L-α-glycerol phosphate was used, and this implies that the osteoblast may use glycerol-3-phosphate shuttle and oxidative phosphorylation to metabolize glycerol-3-phosphate.


Assuntos
Feto/patologia , Análise em Microsséries , Osteoblastos/patologia , Hipóxia Celular , Linhagem Celular , Sobrevivência Celular , Humanos , Osteoblastos/metabolismo , Fenótipo
2.
Microb Pathog ; 122: 130-136, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29909241

RESUMO

The recent global resurgence of arthritogenic alphaviruses, including Ross River, chikungunya, and dengue, highlights an urgency for the development of therapeutic strategies. Currently, dengue represents the most rapidly transmitting mosquito-borne viral disease worldwide. By contracting bone breaking diseases, patients experience devastating clinical manifestations involving muscle pain and bone loss. The bone self-repair and regeneration mechanisms can be damaged by the presence of viruses and bacteria. The rapid establishment of dengue epidemic and the severity of bacterial and viral infections affecting the bone stress the urgent need of developing effective interventions. Herein, we review current knowledge on bone breaking infections, covering both bacterial and mosquito-borne viral ones. The mechanisms exploited by these diseases to significantly affect the bone, including interferences with self-repair and regeneration routes, were discussed. In the final section, challenges for future research aimed to treat and prevent bacterial and mosquito-borne bone-breaking infections have been outlined.


Assuntos
Infecções Bacterianas/complicações , Fraturas Ósseas/fisiopatologia , Viroses/complicações , Animais , Humanos , Mosquitos Vetores/virologia
3.
Trop Anim Health Prod ; 50(4): 741-752, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29243139

RESUMO

Japanese encephalitis (JE) is vector-borne zoonotic disease which causes encephalitis in humans and horses. Clinical signs for Japanese encephalitis virus (JEV) infection are not clearly evident in the majority of affected animals. In Malaysia, information on the prevalence of JEV infection has not been established. Thus, a cross-sectional study was conducted during two periods, December 2015 to January 2016 and March to August in 2016, to determine the prevalence and risk factors in JEV infections among animals and birds in Peninsular Malaysia. Serum samples were harvested from the 416 samples which were collected from the dogs, cats, water birds, village chicken, jungle fowls, long-tailed macaques, domestic pigs, and cattle in the states of Selangor, Perak, Perlis, Kelantan, and Pahang. The serum samples were screened for JEV antibodies by commercial IgG ELISA kits. A questionnaire was also distributed to obtain information on the animals, birds, and the environmental factors of sampling areas. The results showed that dogs had the highest seropositive rate of 80% (95% CI: ± 11.69) followed by pigs at 44.4% (95% CI: ± 1.715), cattle at 32.2% (95% CI: ± 1.058), birds at 28.9% (95% CI: ± 5.757), cats at 15.6% (95% CI: ± 7.38), and monkeys at 14.3% (95% CI: ± 1.882). The study also showed that JEV seropositivity was high in young animals and in areas where mosquito vectors and migrating birds were prevalent.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Encefalite Japonesa (Espécie)/isolamento & purificação , Encefalite Japonesa/veterinária , Gado/virologia , Animais de Estimação/virologia , Animais , Aves , Gatos , Bovinos , Estudos Transversais , Cães , Encefalite Japonesa/epidemiologia , Ensaio de Imunoadsorção Enzimática/veterinária , Haplorrinos , Humanos , Malásia/epidemiologia , Prevalência , Fatores de Risco , Sus scrofa , Suínos
4.
Acta Trop ; 176: 433-439, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28941729

RESUMO

Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species (Leptospiraceae). LipL32 is an abundant lipoprotein from the outer membrane proteins (OMPs) group, highly conserved among pathogenic and intermediate Leptospira species. Several studies used LipL32 as a specific gene to identify the presence of leptospires. This research was aimed to study the characteristics of LipL32 protein gene code, to fill the knowledge gap concerning the most appropriate gene that can be used as antigen to detect the Leptospira. Here, we investigated the features of LipL32 in fourteen Leptospira pathogenic strains based on comparative analyses of their primary, secondary structures and 3D modeling using a bioinformatics approach. Furthermore, the physicochemical properties of LipL32 in different strains were studied, shedding light on the identity of signal peptides, as well as on the secondary and tertiary structure of the LipL32 protein, supported by 3D modelling assays. The results showed that the LipL32 gene was present in all the fourteen pathogenic Leptospira strains used in this study, with limited diversity in terms of sequence conservation, hydrophobic group, hydrophilic group and number of turns (random coil). Overall, these results add basic knowledge to the characteristics of LipL32 protein, contributing to the identification of potential antigen candidates in future research, in order to ensure prompt and reliable detection of pathogenic Leptospira species.


Assuntos
Antígenos de Bactérias/química , Proteínas da Membrana Bacteriana Externa/química , Leptospira/imunologia , Leptospirose/imunologia , Lipoproteínas/química , Modelos Moleculares , Antígenos de Bactérias/imunologia , Proteínas da Membrana Bacteriana Externa/imunologia , Biologia Computacional , Leptospira/genética , Lipoproteínas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...