Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 66(8): 5907-5936, 2023 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-37017629

RESUMO

CCT251236 1, a potent chemical probe, was previously developed from a cell-based phenotypic high-throughput screen (HTS) to discover inhibitors of transcription mediated by HSF1, a transcription factor that supports malignancy. Owing to its activity against models of refractory human ovarian cancer, 1 was progressed into lead optimization. The reduction of P-glycoprotein efflux became a focus of early compound optimization; central ring halogen substitution was demonstrated by matched molecular pair analysis to be an effective strategy to mitigate this liability. Further multiparameter optimization led to the design of the clinical candidate, CCT361814/NXP800 22, a potent and orally bioavailable fluorobisamide, which caused tumor regression in a human ovarian adenocarcinoma xenograft model with on-pathway biomarker modulation and a clean in vitro safety profile. Following its favorable dose prediction to human, 22 has now progressed to phase 1 clinical trial as a potential future treatment for refractory ovarian cancer and other malignancies.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Humanos , Feminino , Fatores de Transcrição/metabolismo , Neoplasias Ovarianas/patologia , Linhagem Celular Tumoral , Antineoplásicos/farmacologia
2.
Nucleic Acids Res ; 45(8): 4401-4412, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28126920

RESUMO

MicroRNA 26a (miR-26a) reduces cell viability in several cancers, indicating that miR-26a could be used as a therapeutic option in patients. We demonstrate that miR-26a not only inhibits G1-S cell cycle transition and promotes apoptosis, as previously described, but also regulates multiple cell cycle checkpoints. We show that sustained miR-26a over-expression in both breast cancer (BC) cell lines and mouse embryonic fibroblasts (MEFs) induces oversized cells containing either a single-large nucleus or two nuclei, indicating defects in mitosis and cytokinesis. Additionally, we demonstrate that miR-26a induces aneuploidy and centrosome defects and enhances tumorigenesis. Mechanistically, it acts by targeting G1-S transition genes as well as genes involved in mitosis and cytokinesis such as CHFR, LARP1 and YWHAE. Importantly, we show that only the re-expression of CHFR in miR-26a over-expressing cells partially rescues normal mitosis and impairs the tumorigenesis exerted by miR-26a, indicating that CHFR represents an important miR-26a target in the regulation of such phenotypes. We propose that miR-26a delivery might not be a viable therapeutic strategy due to the potential deleterious oncogenic activity of this miRNA.


Assuntos
Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Instabilidade Cromossômica , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Proteínas de Neoplasias/genética , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Animais , Autoantígenos/genética , Autoantígenos/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Tamanho Celular , Feminino , Fibroblastos/citologia , Fibroblastos/metabolismo , Pontos de Checagem da Fase G1 do Ciclo Celular , Humanos , Células MCF-7 , Camundongos , MicroRNAs/metabolismo , Mitose , Proteínas de Neoplasias/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Análise de Sequência de RNA , Transdução de Sinais , Ubiquitina-Proteína Ligases , Antígeno SS-B
3.
J Med Chem ; 60(1): 180-201, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28004573

RESUMO

Phenotypic screens, which focus on measuring and quantifying discrete cellular changes rather than affinity for individual recombinant proteins, have recently attracted renewed interest as an efficient strategy for drug discovery. In this article, we describe the discovery of a new chemical probe, bisamide (CCT251236), identified using an unbiased phenotypic screen to detect inhibitors of the HSF1 stress pathway. The chemical probe is orally bioavailable and displays efficacy in a human ovarian carcinoma xenograft model. By developing cell-based SAR and using chemical proteomics, we identified pirin as a high affinity molecular target, which was confirmed by SPR and crystallography.


Assuntos
Amidas/química , Proteínas de Transporte/química , Proteínas de Ligação a DNA/química , Proteínas Nucleares/química , Quinolinas/química , Fatores de Transcrição/química , Administração Oral , Amidas/administração & dosagem , Amidas/farmacologia , Disponibilidade Biológica , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Dioxigenases , Descoberta de Drogas , Fatores de Transcrição de Choque Térmico , Ligantes , Espectroscopia de Prótons por Ressonância Magnética , Quinolinas/administração & dosagem , Quinolinas/farmacologia , Espectrometria de Massas por Ionização por Electrospray
4.
EMBO Rep ; 17(4): 570-84, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26882547

RESUMO

Here, we show that miR-515-5p inhibits cancer cell migration and metastasis. RNA-seq analyses of both oestrogen receptor receptor-positive and receptor-negative breast cancer cells overexpressing miR-515-5p reveal down-regulation of NRAS, FZD4, CDC42BPA, PIK3C2B and MARK4 mRNAs. We demonstrate that miR-515-5p inhibits MARK4 directly 3' UTR interaction and that MARK4 knock-down mimics the effect of miR-515-5p on breast and lung cancer cell migration. MARK4 overexpression rescues the inhibitory effects of miR-515-5p, suggesting miR-515-5p mediates this process through MARK4 down-regulation. Furthermore, miR-515-5p expression is reduced in metastases compared to primary tumours derived from both in vivo xenografts and samples from patients with breast cancer. Conversely, miR-515-5p overexpression prevents tumour cell dissemination in a mouse metastatic model. Moreover, high miR-515-5p and low MARK4 expression correlate with increased breast and lung cancer patients' survival, respectively. Taken together, these data demonstrate the importance of miR-515-5p/MARK4 regulation in cell migration and metastasis across two common cancers.


Assuntos
Movimento Celular , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Metástase Neoplásica , Proteínas Serina-Treonina Quinases/genética , Células A549 , Animais , Apoptose , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo , Feminino , Humanos , Neoplasias Pulmonares/genética , Células MCF-7 , Camundongos , Invasividade Neoplásica , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , RNA Mensageiro
5.
Lancet ; 385 Suppl 1: S37, 2015 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26312859

RESUMO

BACKGROUND: MicroRNAs (miRNAs) are small non-coding RNAs involved in the post-transcriptional regulation of mRNAs and are aberrantly expressed in cancer with important roles in tumorigenesis. A broad analysis of the combined effects of altered activities of miRNAs in pancreatic ductal adenocarcinoma (PDAC) has not been done, and how miRNAs might affect tumour progression or patient outcomes is unclear. METHODS: We combined data from miRNA and mRNA expression profiles from PDAC and normal pancreas samples (each n=9) and used bioinformatic analyses to identify a miRNA-mRNA regulatory network in PDAC. We validated our findings in PDAC cell-lines (PANC-1, MIA PaCa-2, LPc006, and LPc167), subcutaneous PDAC xenografts in mice, and laser capture microdissected PDACs from patients (n=91). We used this information to identify miRNAs that contributed most to tumorigenesis. FINDINGS: We identified three miRNAs (miR-21, miR-23a, and miR-27a) that acted as cooperative repressors of a network of tumour suppressor genes that included PDCD4, BTG2, and NEDD4L. Inhibition of miR-21, miR-23a, and miR-27a had synergistic effects in reducing proliferation of PDAC cells in culture and the growth of xenograft tumours. The level of inhibition was greater than that of silencing oncomiR-21 alone. In PDACs from patients, high levels of the combination of miR-21, miR-23a, and miR-27a was a strong independent predictor of short overall survival after surgical resection (hazard ratio 3·21, 95% CI 1·78-5·78). High expression of this combination was also associated with a more aggressive tumour phenotype: more microscopic tumour infiltration at resection margin and increased perineural invasion. INTERPRETATION: In an integrated data analysis, we identified functional miRNA-mRNA interactions that contribute to PDAC growth. These findings indicate that miRNAs act together to promote tumour progression and that future therapeutic strategies might require inhibition of several miRNAs. Furthermore, high tumour expression of the miR-21, miR-23a, and miR-27a combination could have potential use in the future as a prognostic signature for patients with PDAC. FUNDING: Peel Medical Research Trust, Alliance Family Foundation, Action Against Cancer, National Institute for Health Research, Association for International Cancer Research, Jason Boas Fellowship, Imperial Biomedical Research Centre, Rosetrees Trust, Joseph Ettedgui Charitable Foundation.

6.
PLoS One ; 9(6): e98561, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24926850

RESUMO

BACKGROUND: The growth arrest-specific transcript 5 gene (GAS5) encodes a long noncoding RNA (lncRNA) and hosts a number of small nucleolar RNAs (snoRNAs) that have recently been implicated in multiple cellular processes and cancer. Here, we investigate the relationship between DNA damage, p53, and the GAS5 snoRNAs to gain further insight into the potential role of this locus in cell survival and oncogenesis both in vivo and in vitro. METHODS: We used quantitative techniques to analyse the effect of DNA damage on GAS5 snoRNA expression and to assess the relationship between p53 and the GAS5 snoRNAs in cancer cell lines and in normal, pre-malignant, and malignant human colorectal tissue and used biological techniques to suggest potential roles for these snoRNAs in the DNA damage response. RESULTS: GAS5-derived snoRNA expression was induced by DNA damage in a p53-dependent manner in colorectal cancer cell lines and their levels were not affected by DICER. Furthermore, p53 levels strongly correlated with GAS5-derived snoRNA expression in colorectal tissue. CONCLUSIONS: In aggregate, these data suggest that the GAS5-derived snoRNAs are under control of p53 and that they have an important role in mediating the p53 response to DNA damage, which may not relate to their function in the ribosome. We suggest that these snoRNAs are not processed by DICER to form smaller snoRNA-derived RNAs with microRNA (miRNA)-like functions, but their precise role requires further evaluation. Furthermore, since GAS5 host snoRNAs are often used as endogenous controls in qPCR quantifications we show that their use as housekeeping genes in DNA damage experiments can lead to inaccurate results.


Assuntos
Neoplasias Colorretais/genética , Dano ao DNA , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , Proteína Supressora de Tumor p53/genética , Neoplasias Colorretais/patologia , RNA Helicases DEAD-box/genética , Doxorrubicina/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Genes Essenciais , Células HCT116 , Humanos , Ribonuclease III/genética
7.
Gastroenterology ; 146(1): 268-77.e18, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24120476

RESUMO

BACKGROUND & AIMS: There has not been a broad analysis of the combined effects of altered activities of microRNAs (miRNAs) in pancreatic ductal adenocarcinoma (PDAC) cells, and it is unclear how these might affect tumor progression or patient outcomes. METHODS: We combined data from miRNA and messenger RNA (mRNA) expression profiles and bioinformatic analyses to identify an miRNA-mRNA regulatory network in PDAC cell lines (PANC-1 and MIA PaCa-2) and in PDAC samples from patients. We used this information to identify miRNAs that contribute most to tumorigenesis. RESULTS: We identified 3 miRNAs (MIR21, MIR23A, and MIR27A) that acted as cooperative repressors of a network of tumor suppressor genes that included PDCD4, BTG2, and NEDD4L. Inhibition of MIR21, MIR23A, and MIR27A had synergistic effects in reducing proliferation of PDAC cells in culture and growth of xenograft tumors in mice. The level of inhibition was greater than that of inhibition of MIR21 alone. In 91 PDAC samples from patients, high levels of a combination of MIR21, MIR23A, and MIR27A were associated with shorter survival times after surgical resection. CONCLUSIONS: In an integrated data analysis, we identified functional miRNA-mRNA interactions that contribute to growth of PDACs. These findings indicate that miRNAs act together to promote tumor progression; therapeutic strategies might require inhibition of several miRNAs.


Assuntos
Carcinoma Ductal Pancreático/genética , Regulação Neoplásica da Expressão Gênica/genética , Genes Supressores de Tumor/fisiologia , MicroRNAs/fisiologia , Neoplasias Pancreáticas/genética , RNA Mensageiro/genética , Animais , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Proteínas Reguladoras de Apoptose/fisiologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Complexos Endossomais de Distribuição Requeridos para Transporte/antagonistas & inibidores , Complexos Endossomais de Distribuição Requeridos para Transporte/fisiologia , Perfilação da Expressão Gênica , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Proteínas Imediatamente Precoces/fisiologia , Camundongos , MicroRNAs/genética , Ubiquitina-Proteína Ligases Nedd4 , Prognóstico , Proteínas de Ligação a RNA/antagonistas & inibidores , Proteínas de Ligação a RNA/fisiologia , Proteínas Supressoras de Tumor/antagonistas & inibidores , Proteínas Supressoras de Tumor/fisiologia , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/fisiologia
8.
Bioarchitecture ; 3(4): 119-24, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24002530

RESUMO

The cytoskeleton is a dynamic three dimensional structure contained within the cytoplasm of a cell, and is important in cell shape and movement, and in metastatic progression during carcinogenesis. Members of the Rho family of small GTPases, RHO, RAC and cell cycle division 42 (Cdc42) proteins regulate cytoskeletal dynamics, through the control of a panel of genes. We have recently shown that the microRNA (miRNA) miR-23b represents a central effector of cytoskeletal remodelling. It increases cell-cell interactions, modulates focal adhesion and reduces cell motility and invasion by directly regulating several genes involved in these processes.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Animais , Feminino , Humanos
9.
Cancer Res ; 73(19): 5936-48, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23928990

RESUMO

Sphingosine kinase 1 (SK1) plays an important role in estrogen-dependent breast tumorigenesis, but its regulation is poorly understood. A subset of microRNAs (miRNA, miR) is regulated by estrogen and contributes to cellular proliferation and cancer progression. Here, we describe that miR-515-5p is transcriptionally repressed by estrogen receptor α (ERα) and functions as a tumor suppressor in breast cancer. Its downregulation enhances cell proliferation and estrogen-dependent SK1 activity, mediated by a reduction of miR-515-5p posttranscriptional repression. Enforced expression of miR-515-5p in breast cancer cells causes a reduction in SK1 activity, reduced cell proliferation, and the induction of caspase-dependent apoptosis. Conversely, opposing effects occur with miR-515-5p inhibition and by SK1 silencing. Notably, we show that estradiol (E2) treatment downregulates miR-515-5p levels, whereas the antiestrogen tamoxifen causes a decrease in SK1, which is rescued by silencing miR-515-5p. Analysis of chromatin immunoprecipitation sequencing (ChIP-Seq) data reveals that miR-515-5p suppression is mediated by a direct interaction of ERα within its promoter. RNA-sequencing (RNA-Seq) analysis of breast cancer cells after overexpressing miR-515-5p indicates that it partly modulates cell proliferation by regulating the Wnt pathway. The clinical implications of this novel regulatory system are shown as miR-515-5p is significantly downregulated in ER-positive (n = 146) compared with ER-negative (n = 98) breast cancers. Overall, we identify a new link between ERα, miR-515-5p, proliferation, and apoptosis in breast cancer tumorigenesis.


Assuntos
Apoptose , Neoplasias da Mama/patologia , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Antineoplásicos Hormonais/farmacologia , Western Blotting , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Feminino , Humanos , MicroRNAs/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tamoxifeno/farmacologia , Células Tumorais Cultivadas
10.
Nucleic Acids Res ; 41(10): 5400-12, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23580553

RESUMO

Uncontrolled cell proliferation and cytoskeletal remodeling are responsible for tumor development and ultimately metastasis. A number of studies have implicated microRNAs in the regulation of cancer cell invasion and migration. Here, we show that miR-23b regulates focal adhesion, cell spreading, cell-cell junctions and the formation of lamellipodia in breast cancer (BC), implicating a central role for it in cytoskeletal dynamics. Inhibition of miR-23b, using a specific sponge construct, leads to an increase of cell migration and metastatic spread in vivo, indicating it as a metastatic suppressor microRNA. Clinically, low miR-23b expression correlates with the development of metastases in BC patients. Mechanistically, miR-23b is able to directly inhibit a number of genes implicated in cytoskeletal remodeling in BC cells. Through intracellular signal transduction, growth factors activate the transcription factor AP-1, and we show that this in turn reduces miR-23b levels by direct binding to its promoter, releasing the pro-invasive genes from translational inhibition. In aggregate, miR-23b expression invokes a sophisticated interaction network that co-ordinates a wide range of cellular responses required to alter the cytoskeleton during cancer cell motility.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Movimento Celular , Citoesqueleto/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/metabolismo , Animais , Neoplasias da Mama/metabolismo , Miosinas Cardíacas/metabolismo , Adesão Celular , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Feminino , Adesões Focais/ultraestrutura , Humanos , Camundongos , Camundongos Nus , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Cadeias Leves de Miosina/metabolismo , Metástase Neoplásica , Fosforilação , Regiões Promotoras Genéticas , Pseudópodes/ultraestrutura , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Quinases Ativadas por p21/metabolismo
11.
Expert Rev Anticancer Ther ; 13(1): 21-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23259424

RESUMO

Several studies have implicated miRNAs in the initiation and progression of human cancers. Examining the biogenesis pathways that generate these important regulatory molecules has revealed new mechanisms for tumor development. Altered expression of the endoribonuclease Dicer in many tumors has given new hope to unraveling the complex relationship between miRNA processing and cancer. This may provide further insight into mechanisms for targeting multiple genes that are critical for the malignant phenotype of several cancers. The evaluated article demonstrates that Dicer is transcriptionally regulated by Sox4 and reduced levels of this transcription factor consequently leads to a reduction in expression, and therefore deregulation of cancer-related miRNAs in melanoma. Reduced Dicer expression in malignant melanoma is an independent predictor of poor survival. In this review, we assess the prognostic significance of Dicer expression in different tumor types.

12.
Cardiology ; 122(4): 253-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22907032

RESUMO

Cardiotoxicity associated with breast cancer treatment is an important concern in the oncology clinic. Different types of anti-cancer therapies have recorded high rates of cardiac dysfunction in treated patients. Cardiac dysfunction linked to anthracyclines--one of the most common conventional chemotherapies--has extensively been described and several mechanisms have been proposed, although their mode of action is not fully understood even in cancer cells. The mediation of cardiac damage by reactive oxygen species stress is a recent hypothesis that has attracted a lot of interest, since it might explain the tissue-specific toxic effects of anthracyclines in the heart. Regarding molecular targeted tyrosine kinase inhibitors used in patients with human epidermal growth factor receptor type 2+ tumours (e.g., trastuzumab, lapatinib), it is the blockage of survival pathways required for a normal heart development and function that seems to lead to cardiac pathology. Both types of breast cancer treatment appear to trigger cardiotoxicity synergically, being patients under adjuvant therapy closely monitored. Given the complex nature of heart failure and of the pathways altered by anti-cancer drugs, global gene expression regulation is key in the heart disease process. MicroRNAs have been demonstrated to be small molecules with big roles as essential gene expression modulators. The great potential of microRNAs as biomarkers in the cardio-oncology field needs to be further explored before new microRNA-based diagnostic and therapeutic tools can be developed.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/efeitos adversos , Cardiopatias/induzido quimicamente , Feminino , Humanos , MicroRNAs/fisiologia , Terapia de Alvo Molecular/métodos , Miócitos Cardíacos/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Espécies Reativas de Oxigênio , Receptor ErbB-2/antagonistas & inibidores
13.
Mol Diagn Ther ; 16(3): 167-72, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22489664

RESUMO

BACKGROUND: MicroRNAs (miRNAs) may function as suppressors or promoters of tumor metastasis according to their messenger RNA targets. Previous studies have suggested that miR-9 and miR-151-5p are associated with metastasis in breast cancer and hepatocellular carcinoma, respectively. We aimed to further establish the potential roles of miR-9 and miR-151-5p in tumor invasion and metastasis and investigate their use as biomarkers. METHODS: We used quantitative real-time PCR (qRT-PCR) to measure differences in miR-9 and miR-151-5p expression between primary breast tumors and their lymph-node metastases in 194 paired tumor samples from 97 patients. We also correlated expression levels with histologic data to investigate their utility as biomarkers. RESULTS: There were no significant differences in miR-9 expression between the primary tumors and lymph nodes; however, miR-151-5p expression was significantly lower in the lymph-node metastases than in their corresponding tumors (p < 0.05). miR-9 levels were elevated in primary breast tumors from patients diagnosed with higher-grade tumors (p < 0.05); however, no differences were observed in miR-151-5p levels between different grades of tumor. Interestingly, miR-9 levels were elevated in invasive lobular carcinomas (ILC) compared with invasive ductal carcinomas (IDC; p < 0.01). CONCLUSIONS: In aggregate, these data suggest that miR-151-5p upregulation may suppress metastasis in primary breast tumors. Both miRNAs may serve as useful biomarkers in future clinical trials in breast cancer.


Assuntos
Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Metástase Linfática/genética , MicroRNAs/genética , Adulto , Biomarcadores Tumorais , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real
14.
PLoS One ; 7(2): e32068, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384141

RESUMO

BACKGROUND: MicroRNA (miRNA) expression profiles have been described in pancreatic ductal adenocarcinoma (PDAC), but these have not been compared with pre-malignant pancreatic tumors. We wished to compare the miRNA expression signatures in pancreatic benign cystic tumors (BCT) of low and high malignant potential with PDAC, in order to identify miRNAs deregulated during PDAC development. The mechanistic consequences of miRNA dysregulation were further evaluated. METHODS: Tissue samples were obtained at a tertiary pancreatic unit from individuals with BCT and PDAC. MiRNA profiling was performed using a custom microarray and results were validated using RT-qPCR prior to evaluation of miRNA targets. RESULTS: Widespread miRNA down-regulation was observed in PDAC compared to low malignant potential BCT. We show that amongst those miRNAs down-regulated, miR-16, miR-126 and let-7d regulate known PDAC oncogenes (targeting BCL2, CRK and KRAS respectively). Notably, miR-126 also directly targets the KRAS transcript at a "seedless" binding site within its 3'UTR. In clinical specimens, miR-126 was strongly down-regulated in PDAC tissues, with an associated elevation in KRAS and CRK proteins. Furthermore, miR-21, a known oncogenic miRNA in pancreatic and other cancers, was not elevated in PDAC compared to serous microcystic adenoma (SMCA), but in both groups it was up-regulated compared to normal pancreas, implicating early up-regulation during malignant change. CONCLUSIONS: Expression profiling revealed 21 miRNAs down-regulated in PDAC compared to SMCA, the most benign lesion that rarely progresses to invasive carcinoma. It appears that miR-21 up-regulation is an early event in the transformation from normal pancreatic tissue. MiRNA expression has the potential to distinguish PDAC from normal pancreas and BCT. Mechanistically the down-regulation of miR-16, miR-126 and let-7d promotes PDAC transformation by post-transcriptional up-regulation of crucial PDAC oncogenes. We show that miR-126 is able to directly target KRAS; re-expression has the potential as a therapeutic strategy against PDAC and other KRAS-driven cancers.


Assuntos
Transformação Celular Neoplásica/metabolismo , Regulação para Baixo , MicroRNAs/metabolismo , Neoplasias/patologia , Oncogenes , Neoplasias Pancreáticas/patologia , Regiões 3' não Traduzidas , Apoptose , Linhagem Celular Tumoral , Ilhas de CpG , Perfilação da Expressão Gênica , Humanos , Imuno-Histoquímica/métodos , Luciferases/metabolismo , Modelos Estatísticos , Neoplasias/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Transfecção , Regulação para Cima , Proteínas ras/metabolismo
15.
Expert Rev Anticancer Ther ; 12(3): 323-30, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22369323

RESUMO

miRNAs play a role in post-transcriptional gene regulation by translational repression and/or mRNA degradation in a very tissue-specific manner. In order to understand the function of a miRNA, it is best to identify the genes that it regulates. Putative mRNA targets of miRNAs identified from seed sequence matches are available using computational algorithms in various web-based databases. However, these tend to have high false-positive rates and, owing to a whole-genome approach, cannot identify tissue/tumor specificity of regulation. The evaluated article presents a large amount of data analyzing global RNA expression in breast cancer and examines whether miRNAs are prognostic due to their effects on mRNA targets. This valuable and important resource of combined miRNA and mRNA expression in breast cancer and its subtypes has been summarized. Many studies have now investigated the integrated analysis of miRNA:mRNA profiles in human malignancies, the goal as always being to identify novel biomarkers and therapeutic targets for each tumor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...