Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Langmuir ; 39(22): 7804-7810, 2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37227151

RESUMO

When solute molecules in a liquid evaporate at the surface, concentration gradients can lead to surface tension gradients and provoke fluid convection at the interface, a phenomenon commonly known as the Marangoni effect. Here, we demonstrate that minute quantities of ethanol in concentrated sodium hydroxide solution can induce pronounced and long-lasting Marangoni flow upon evaporation at room temperature. By employing particle image velocimetry and gravimetric analysis, we show that the mean interfacial speed of the evaporating solution sensitively increases with the evaporation rate for ethanol concentrations lower than 0.5 mol %. Placing impermeable objects near the liquid-gas interface enforces steady concentration gradients, thereby promoting the formation of stationary flows. This allows for contact-free control of the flow pattern as well as its modification by altering the objects shape. Analysis of bulk flows reveals that the energy of evaporation in the case of stationary flows is converted to kinetic fluid energy with high efficiency, but reducing the sodium hydroxide concentration drastically suppresses the observed effect to the point where flows become entirely absent. Investigating the properties of concentrated sodium hydroxide solution suggests that ethanol dissolution in the bulk is strongly limited. At the surface, however, the co-solvent is efficiently stored, enabling rapid adsorption or desorption of the alcohol depending on its concentration in the adjacent gas phase. This facilitates the generation of large surface tension gradients and, in combination with the perpetual replenishment of the surface ethanol concentration by bulk convection, to the generation of long-lasting, self-sustaining flows.

2.
Chem Mater ; 34(16): 7159-7166, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032550

RESUMO

A reproducible synthesis strategy for ultracrystalline K,Na-aluminosilicate JBW zeolite is reported. The synthesis uses a Na-based hydrated silicate ionic liquid (HSIL) as a silicon source and gibbsite as the aluminum source. 27Al and 23Na NMR spectra exhibit crystalline second-order quadrupole patterns in the hydrated as well as dehydrated states and distinct resonances for different T-sites demonstrating an exceptional degree of order of the elements of the JBW framework, observed for the first time in a zeolite. Detailed structural analysis via NMR crystallography, combining powder X-ray diffraction and solid-state NMR of all elements (27Al, 29Si, 23Na, 39K, and 1H), reveals remarkable de- and rehydration behavior of the JBW framework, transforming from its as-made hydrated structure via a modified anhydrous state into a different rehydrated symmetry while showing astonishing flexibility for a semicondensed aluminosilicate. Its crystallinity, exceptional degree of ordering of the T atoms and sodium cations, and the fully documented structure qualify this defect-free K,Na-aluminosilicate JBW zeolite as a suitable model system for developing NMR modeling methods.

3.
Chem Mater ; 34(16): 7150-7158, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032556

RESUMO

Using hydrated silicate ionic liquids, phase selection and framework silicon-to-aluminum ratio during inorganic zeolite synthesis were studied as a function of batch composition. Consisting of homogeneous single phasic liquids, this synthesis concept allows careful control of crystallization parameters and evaluation of yield and sample homogeneity. Ternary phase diagrams were constructed for syntheses at 90 °C for 1 week. The results reveal a cation-dependent continuous relation between batch stoichiometry and framework aluminum content, valid across the phase boundaries of all different zeolites formed in the system. The framework aluminum content directly correlates to the type of alkali cation and gradually changes with batch alkalinity and dilution. This suggests that the observed zeolites form through a solution-mediated mechanism involving the concerted assembly of soluble cation-oligomer ion pairs. Phase selection is a consequence of the stability for a particular framework at the given aluminum content and alkali type.

4.
Chem Mater ; 34(16): 7139-7149, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36032557

RESUMO

Current nucleation models propose manifold options for the formation of crystalline materials. Exploring and distinguishing between different crystallization pathways on the molecular level however remain a challenge, especially for complex porous materials. These usually consist of large unit cells with an ordered framework and pore components and often nucleate in complex, multiphasic synthesis media, restricting in-depth characterization. This work shows how aluminosilicate speciation during crystallization can be documented in detail in monophasic hydrated silicate ionic liquids (HSILs). The observations reveal that zeolites can form via supramolecular organization of ion-paired prenucleation clusters, consisting of aluminosilicate anions, ion-paired to alkali cations, and imply that zeolite crystallization from HSILs can be described within the spectrum of modern nucleation theory.

6.
Faraday Discuss ; 235(0): 162-182, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35660805

RESUMO

Probing nucleation and growth of porous crystals at a molecular level remains a cumbersome experimental endeavour due to the complexity of the synthesis media involved. In particular, the study of zeolite formation is hindered as these typically form in multiphasic synthesis media, which restricts experimental access to crystallisation processes. Zeolite formation from single phasic hydrated silicate ionic liquids (HSiL) opens new possibilities. In this work, HSiL zeolite crystallisation is investigated in situ using a specifically designed conductivity measurement set-up yielding access to crystallisation kinetics. Based on the conductivity data and final yields, a crystallisation model explaining the results based on a surface growth mechanism was derived. The excellent agreement between experiment and theory indicates zeolite crystallisation from highly ionic media proceeds via a multi-step mechanism, involving an initial reversible surface condensation of a growth unit, followed by incorporation of that unit into the growing crystal. The first step is governed by the liquid phase concentration and surface energy, while the final step shows a correlation to the mobility of the cation involved.

7.
Chem Mater ; 34(24): 11081-11092, 2022 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-36590702

RESUMO

A guideline for zeolite phase selection in inorganic synthesis media is proposed, based on a systematic exploration of synthesis from inorganic media using liquid Na+, K+, and Cs+ aluminosilicate. Although the Si/Al ratio of the zeolites is a continuous function of the synthesis conditions, boundaries between topologies are sharp. The here-derived phase selection criterion relates the obtained zeolite topology to the Si/Al ratio imposed by the synthesis medium. For a given Si/Al ratio, the framework with the highest occupation of topologically available cation sites is favored. The large number of published zeolite syntheses supporting the observation provides strong indication that the concept is applicable in a larger context. The proposed criterion explains how minor variations in the composition of inorganic synthesis media induce the commonly occurring, abrupt changes in topology. It highlights underlying reasons causing the strict demarcation of stability fields of the as-synthesized zeolites experimentally observed in inorganic synthesis.

8.
Mater Horiz ; 8(9): 2576-2583, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34870303

RESUMO

In inorganic zeolite formation, a direct correspondence between liquid state species in the synthesis and the supramolecular decoration of the pores in the as-made final zeolite has never been reported. In this paper, a direct link between the sodium speciation in the synthesis mixture and the pore structure and content of the final zeolite is demonstrated in the example of hydroxysodalite. Super-ions with 4 sodium cations bound by mono- and bihydrated hydroxide are identified as structure-directing agents for the formation of this zeolite. This documentation of inorganic solution species acting as a templating agent in zeolite formation opens new horizons for zeolite synthesis by design.

9.
ACS Sens ; 5(11): 3392-3397, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33107724

RESUMO

A measurement cell for the use of accurate conductivity measurements of corrosive ionic media is presented. Based on the concept of moving electrode electrochemical impedance spectroscopy, exceptional measurement accuracy is achieved in a large conductivity range. Extensive testing with corrosive ionic media demonstrated the robust operation of the cell under harsh chemical conditions, up to temperatures of 130 °C. The novel design allows monitoring small conductivity changes during chemical reactions in ionic media, for instance, zeolite formation from hydrated ionic liquids.


Assuntos
Cáusticos , Espectroscopia Dielétrica , Condutividade Elétrica , Eletrodos , Íons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...