Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
Sci Data ; 11(1): 17, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167392

RESUMO

Numerous drivers such as farming practices, erosion, land-use change, and soil biogeochemical background, determine the global spatial distribution of phosphorus (P) in agricultural soils. Here, we revised an approach published earlier (called here GPASOIL-v0), in which several global datasets describing these drivers were combined with a process model for soil P dynamics to reconstruct the past and current distribution of P in cropland and grassland soils. The objective of the present update, called GPASOIL-v1, is to incorporate recent advances in process understanding about soil inorganic P dynamics, in datasets to describe the different drivers, and in regional soil P measurements for benchmarking. We trace the impact of the update on the reconstructed soil P. After the update we estimate a global averaged inorganic labile P of 187 kgP ha-1 for cropland and 91 kgP ha-1 for grassland in 2018 for the top 0-0.3 m soil layer, but these values are sensitive to the mineralization rates chosen for the organic P pools. Uncertainty in the driver estimates lead to coefficients of variation of 0.22 and 0.54 for cropland and grassland, respectively. This work makes the methods for simulating the agricultural soil P maps more transparent and reproducible than previous estimates, and increases the confidence in the new estimates, while the evaluation against regional dataset still suggests rooms for further improvement.

4.
Glob Chang Biol ; 30(1): e16983, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37905459

RESUMO

The term carbon (C) sequestration has not just become a buzzword but is something of a siren's call to scientific communicators and media outlets. Carbon sequestration is the removal of C from the atmosphere and the storage, for example, in soil. It has the potential to partially compensate for anthropogenic greenhouse gas emissions and is, therefore, an important piece in the global climate change mitigation puzzle. However, the term C sequestration is often used misleadingly and, while likely unintentional, can lead to the perpetuation of biased conclusions and exaggerated expectations about its contribution to climate change mitigation efforts. Soils have considerable potential to take up C but many are also in a state of continuous loss. In such soils, measures to build up soil C may only lead to a reduction in C losses (C loss mitigation) rather than result in real C sequestration and negative emissions. In an examination of 100 recent peer-reviewed papers on topics surrounding soil C, only 4% were found to have used the term C sequestration correctly. Furthermore, 13% of the papers equated C sequestration with C stocks. The review, further, revealed that measures leading to C sequestration will not always result in climate change mitigation when non-CO2 greenhouse gases and leakage are taken into consideration. This paper highlights potential pitfalls when using the term C sequestration incorrectly and calls for accurate usage of this term going forward. Revised and new terms are suggested to distinguish clearly between C sequestration in soils, SOC loss mitigation, negative emissions, climate change mitigation, SOC storage, and SOC accrual to avoid miscommunication among scientists and stakeholder groups in future.


Assuntos
Gases de Efeito Estufa , Solo , Mudança Climática , Sequestro de Carbono , Carbono/análise , Agricultura
5.
Glob Chang Biol ; 27(11): 2458-2477, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33538378

RESUMO

Increasing soil organic carbon (SOC) stocks is a promising way to mitigate the increase in atmospheric CO2 concentration. Based on a simple ratio between CO2 anthropogenic emissions and SOC stocks worldwide, it has been suggested that a 0.4% (4 per 1000) yearly increase in SOC stocks could compensate for current anthropogenic CO2 emissions. Here, we used a reverse RothC modelling approach to estimate the amount of C inputs to soils required to sustain current SOC stocks and to increase them by 4‰ per year over a period of 30 years. We assessed the feasibility of this aspirational target first by comparing the required C input with net primary productivity (NPP) flowing to the soil, and second by considering the SOC saturation concept. Calculations were performed for mainland France, at a 1 km grid cell resolution. Results showed that a 30%-40% increase in C inputs to soil would be needed to obtain a 4‰ increase per year over a 30-year period. 88.4% of cropland areas were considered unsaturated in terms of mineral-associated SOC, but characterized by a below target C balance, that is, less NPP available than required to reach the 4‰ aspirational target. Conversely, 90.4% of unimproved grasslands were characterized by an above target C balance, that is, enough NPP to reach the 4‰ objective, but 59.1% were also saturated. The situation of improved grasslands and forests was more evenly distributed among the four categories (saturated vs. unsaturated and above vs below target C balance). Future data from soil monitoring networks should enable to validate these results. Overall, our results suggest that, for mainland France, priorities should be (1) to increase NPP returns in cropland soils that are unsaturated and have a below target carbon balance and (2) to preserve SOC stocks in other land uses.


Assuntos
Carbono , Solo , Carbono/análise , Sequestro de Carbono , Estudos de Viabilidade , França
6.
Glob Chang Biol ; 27(8): 1645-1661, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421219

RESUMO

Many studies have assessed the potential of agricultural practices to sequester carbon (C). A comprehensive evaluation of impacts of agricultural practices requires not only considering C storage but also direct and indirect emissions of greenhouse gases (GHG) and their side effects (e.g., on the water cycle or agricultural production). We used a high-resolution modeling approach with the Simulateur mulTIdisciplinaire pour les Cultures Standard soil-crop model to quantify soil organic C (SOC) storage potential, GHG balance, biomass production and nitrogen- and water-related impacts for all arable land in France for current cropping systems (baseline scenario) and three mitigation scenarios: (i) spatial and temporal expansion of cover crops, (ii) spatial insertion and temporal extension of temporary grasslands (two sub-scenarios) and (iii) improved recycling of organic resources as fertilizer. In the baseline scenario, SOC decreased slightly over 30 years in crop-only rotations but increased significantly in crop/temporary grassland rotations. Results highlighted a strong trade-off between the storage rate per unit area (kg C ha-1  year-1 ) of mitigation scenarios and the areas to which they could be applied. As a result, while the most promising scenario at the field scale was the insertion of temporary grassland (+466 kg C ha-1  year-1 stored to a depth of 0.3 m compared to the baseline, on 0.68 Mha), at the national scale, it was by far the expansion of cover crops (+131 kg C ha-1  year-1 , on 17.62 Mha). Side effects on crop production, water irrigation and nitrogen emissions varied greatly depending on the scenario and production situation. At the national scale, combining the three mitigation scenarios could mitigate GHG emissions of current cropping systems by 54% (-11.2 from the current 20.5 Mt CO2 e year-1 ), but the remaining emissions would still lie far from the objective of C-neutral agriculture.


Assuntos
Gases de Efeito Estufa , Agricultura , Carbono , Produtos Agrícolas , França , Efeito Estufa , Gases de Efeito Estufa/análise , Solo
7.
Glob Chang Biol ; 27(2): 237-256, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32894815

RESUMO

To respect the Paris agreement targeting a limitation of global warming below 2°C by 2100, and possibly below 1.5°C, drastic reductions of greenhouse gas emissions are mandatory but not sufficient. Large-scale deployment of other climate mitigation strategies is also necessary. Among these, increasing soil organic carbon (SOC) stocks is an important lever because carbon in soils can be stored for long periods and land management options to achieve this already exist and have been widely tested. However, agricultural soils are also an important source of nitrous oxide (N2 O), a powerful greenhouse gas, and increasing SOC may influence N2 O emissions, likely causing an increase in many cases, thus tending to offset the climate change benefit from increased SOC storage. Here we review the main agricultural management options for increasing SOC stocks. We evaluate the amount of SOC that can be stored as well as resulting changes in N2 O emissions to better estimate the climate benefits of these management options. Based on quantitative data obtained from published meta-analyses and from our current level of understanding, we conclude that the climate mitigation induced by increased SOC storage is generally overestimated if associated N2 O emissions are not considered but, with the exception of reduced tillage, is never fully offset. Some options (e.g. biochar or non-pyrogenic C amendment application) may even decrease N2 O emissions.


Assuntos
Gases de Efeito Estufa , Solo , Agricultura , Carbono/análise , Óxido Nitroso/análise , Paris
8.
Nat Food ; 2(5): 363-372, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-37117718

RESUMO

Organic agriculture is widely accepted as a strategy to reduce the environmental impacts of food production and help achieve global climate and biodiversity targets. However, studies concluding that organic farming could satisfy global food demand have overlooked the key role that nitrogen plays in sustaining crop yields. Using a spatially explicit biophysical optimization model that accounts for crop growth nitrogen requirements, we show that, in the absence of synthetic nitrogen fertilizers, the production gap between organic and conventional agriculture increases as organic agriculture expands globally (with organic producing 36% less food for human consumption than conventional in a fully organic world). Yet, by targeting both food supply (via a redesign of the livestock sector) and demand (by reducing average per capita caloric intake), public policies could support a transition towards organic agriculture in 40-60% of the global agricultural area even under current nitrogen limitations thus helping to achieve important environmental and health benefits.

9.
Front Plant Sci ; 11: 149, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174939

RESUMO

Phosphorus (P) is the second most important nutrient after nitrogen (N) and can greatly diminish plant productivity if P supply is not adequate. Plants respond to soil P availability by adjusting root biomass to maintain uptake and productivity due to P use. In spite of our vast knowledge on P effects on plant growth, how to functionally model enhanced root biomass allocation in low P environments is not fully explored. We develop a dynamic plant model based on the principle of optimal carbon (C) and P allocation to investigate growth and functional response to contrasting levels of soil P availability. By describing plant growth as a balance of growth and respiration processes, we optimize C and P allocation in order to maximize leaf productivity and drive plant response. We compare our model to a field trial and a set of hydroponic experiments which describe plant response at varying P availabilities. The model is able to reproduce long-term plant functional response to different P levels like change in root-shoot ratio (RSR), total biomass and organ P concentration. But it is not capable of fully describing the time evolution of organ P uptake and cycling within the plant. Most notable is the underestimation of organ P uptake during the vegetative growth stage which is due to the model's leaf productivity formalism. In spite of the model's parsimonious nature, which optimizes for and predicts whole plant response through leaf productivity alone, the optimal growth hypothesis can provide a reasonable framework for modelling plant response to environmental change that can be used in more physically driven vegetation models.

10.
Sci Rep ; 7(1): 13761, 2017 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-29062017

RESUMO

Cropland use activities are major drivers of global environmental changes and of farming system resilience. Rotating crops is a critical land-use driver, and a farmers' key strategy to control environmental stresses and crop performances. Evidence has accumulated that crop rotations have been dramatically simplified over the last 50 years. In contrast, organic farming stands as an alternative production way that promotes crop diversification. However, our understanding of crop rotations is surprisingly limited. In order to understand if organic farming would result in more diversified and multifunctional landscapes, we provide here a novel, systematic comparison of organic-to-conventional crop rotations at the global scale based on a meta-analysis of the scientific literature, paired with an independent analysis of organic-to-conventional land-use. We show that organic farming leads to differences in land-use compared to conventional: overall, crop rotations are 15% longer and result in higher diversity and evener crop species distribution. These changes are driven by a higher abundance of temporary fodders, catch and cover-crops, mostly to the detriment of cereals. We also highlighted differences in organic rotations between Europe and North-America, two leading regions for organic production. This increased complexity of organic crop rotations is likely to enhance ecosystem service provisioning to agroecosystems.

11.
Glob Chang Biol ; 23(8): 3418-3432, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28067005

RESUMO

Phosphorus (P) availability in soils limits crop yields in many regions of the World, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global data sets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analysed both the labile inorganic P (PILAB ), a proxy of the pool involved in plant nutrition and the total soil P (PTOT ). We found that the soil biogeochemical background corresponding to P inherited from natural soils at the conversion to agriculture (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between PTOT vs. PILAB . When the spatial variability was computed between grid cells at half-degree resolution, we found that almost all of the PTOT spatial variability could be explained by BIOG, while BIOG and FARM explained 38% and 63% of PILAB spatial variability, respectively. Our work also showed that the driver contribution was sensitive to the spatial scale characterizing the variability (grid cell vs. continent) and to the region of interest (global vs. tropics for instance). In particular, the heterogeneity of farming practices between continents was large enough to make FARM contribute to the variability in PTOT at that scale. We thus demonstrated how the different drivers were combined to explain the global distribution of agricultural soil P. Our study is also a promising approach to investigate the potential effect of P as a limiting factor for agroecosystems at the global scale.


Assuntos
Agricultura , Fósforo/química , Solo/química , Produtos Agrícolas , Plantas
12.
Sci Total Environ ; 543(Pt A): 467-479, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26599147

RESUMO

Improvement in nutrient recycling in agriculture is essential to maintain food production while minimising nutrient pollution of the environment. For this purpose, understanding and modelling nutrient cycles in food and related agro-industrial systems is a crucial task. Although nutrient management has been addressed at the plot and farm scales for many years now in the agricultural sciences, there is a need to upscale these approaches to capture the additional drivers of nutrient cycles that may occur at the local, i.e. district, scale. Industrial ecology principles provide sound bases to analyse nutrient cycling in complex systems. However, since agro-food social-ecological systems have specific ecological and social dimensions, we argue that a new field, referred to as "Agro-Industrial Ecology", is needed to study these systems. In this paper, we review the literature on nutrient cycling in complex social-ecological systems that can provide a basis for Agro-Industrial Ecology. We identify and describe three major approaches: Environmental Assessment tools, Stock and Flow Analysis methods and Agent-based models. We then discuss their advantages and drawbacks for assessing and modelling nutrient cycles in agro-food systems in terms of their purpose and scope, object representation and time-spatial dynamics. We finally argue that combining stock-flow methods with both agent-based models and environmental impact assessment tools is a promising way to analyse the role of economic agents on nutrient flows and losses and to explore scenarios that better close the nutrient cycles at the local scale.

13.
PLoS One ; 10(6): e0130886, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26098877

RESUMO

The identification of an ecological niche specific to the regeneration phase has mobilised significant attention. However, the importance of the regeneration niche concept remains unclear. Our main objective was to study the existence of such a regeneration niche for a leguminous shrub, Ulex europaeus. This study was carried out in southwest France in the context of water and nutrient stresses (mainly phosphorus limitation) due to the presence of nutrient-poor sandy soils. We analysed the regeneration of the species from the germination of seeds and emergence of new seedlings until the seedlings reached young shrub size. Our design included a P fertilisation treatment. We also investigated microsite characteristics (micro-topography and vegetation development) as they can interact with meteorological conditions and determine water availability for seeds and seedlings. We found that P availability controlled seedling growth and the time necessary to reach young shrub size. Water availability appeared to impact the species germination and seedlings survival. We also found that P and water availability depended on the interactions between microsite characteristics and climatic variations. Finally we found evidence that P and water availability are important ecological factors shaping the regeneration niche of the species, but we found weak evidence that any microsite would be appropriate for the regeneration of the species in the long term. Future studies regarding regeneration niches need to distinguish more clearly the ecological factors important for regeneration (the regeneration niche per se) and the physical world where the seedlings appear and develop (the regeneration habitat).


Assuntos
Fabaceae/crescimento & desenvolvimento , Ecologia , Ecossistema , França , Germinação/fisiologia , Fósforo , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento , Solo , Especificidade da Espécie , Estresse Fisiológico/fisiologia , Água
14.
Ambio ; 44 Suppl 2: S193-206, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25681977

RESUMO

The inefficient use of phosphorus (P) in the food chain is a threat to the global aquatic environment and the health and well-being of citizens, and it is depleting an essential finite natural resource critical for future food security and ecosystem function. We outline a strategic framework of 5R stewardship (Re-align P inputs, Reduce P losses, Recycle P in bioresources, Recover P in wastes, and Redefine P in food systems) to help identify and deliver a range of integrated, cost-effective, and feasible technological innovations to improve P use efficiency in society and reduce Europe's dependence on P imports. Their combined adoption facilitated by interactive policies, co-operation between upstream and downstream stakeholders (researchers, investors, producers, distributors, and consumers), and more harmonized approaches to P accounting would maximize the resource and environmental benefits and help deliver a more competitive, circular, and sustainable European economy. The case of Europe provides a blueprint for global P stewardship.


Assuntos
Conservação dos Recursos Naturais , Fósforo , Ecossistema , Europa (Continente)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...