Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plast Reconstr Surg ; 121(4): 1135-1143, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18349630

RESUMO

BACKGROUND: Diabetes impairs the ability of tissue to respond adequately to ischemia. The underlying mechanisms contributing to this impaired response remain unknown. Because increases in apoptosis have been linked to a spectrum of diabetic complications, the authors examined whether programmed cell death is involved in the pathogenesis of poor diabetic tissue responses to ischemia. METHODS: Analysis for apoptosis and levels of proaptotic protein, p53, were performed on streptozocin-induced diabetic mice and wild-type controls in a murine model of soft-tissue ischemia (n = 6). In vitro, chronic hyperglycemic culture conditions were used to test inducibility and reversibility of the diabetic phenotype. Small interfering RNA was used to assess the role of p53. RESULTS: Ischemia-induced apoptosis and p53 levels were increased significantly in diabetic dermal fibroblasts both in vivo and in vitro. Chronic hyperglycemic culture was sufficient to induce the increased apoptotic phenotype, and this was not reversible with long-term normoglycemic conditions. Blocking p53 with small interfering RNA resulted in significant protection against ischemic apoptosis. CONCLUSIONS: These findings suggest that diabetes causes an increased apoptotic response to ischemia through a p53-mediated mechanism. This increase is not reversible by exposure to low-glucose conditions. This suggests that glycemic control alone will be unable to prevent tissue necrosis in diabetic patients and suggests novel therapeutic strategies for this condition.


Assuntos
Apoptose , Diabetes Mellitus Experimental/patologia , Isquemia/patologia , Proteína Supressora de Tumor p53/fisiologia , Animais , Células Cultivadas , Camundongos
2.
Am J Pathol ; 164(6): 1935-47, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15161630

RESUMO

Diminished production of vascular endothelial growth factor (VEGF) and decreased angiogenesis are thought to contribute to impaired tissue repair in diabetic patients. We examined whether recombinant human VEGF(165) protein would reverse the impaired wound healing phenotype in genetically diabetic mice. Paired full-thickness skin wounds on the dorsum of db/db mice received 20 microg of VEGF every other day for five doses to one wound and vehicle (phosphate-buffered saline) to the other. We demonstrate significantly accelerated repair in VEGF-treated wounds with an average time to resurfacing of 12 days versus 25 days in untreated mice. VEGF-treated wounds were characterized by an early leaky, malformed vasculature followed by abundant granulation tissue deposition. The VEGF-treated wounds demonstrated increased epithelialization, increased matrix deposition, and enhanced cellular proliferation, as assessed by uptake of 5-bromodeoxyuridine. Analysis of gene expression by real-time reverse transcriptase-polymerase chain reaction demonstrates a significant up-regulation of platelet-derived growth factor-B and fibroblast growth factor-2 in VEGF-treated wounds, which corresponds with the increased granulation tissue in these wounds. These experiments also demonstrated an increase in the rate of repair of the contralateral phosphate-buffered saline-treated wound when compared to wounds in diabetic mice never exposed to VEGF (18 days versus 25 days), suggesting that topical VEGF had a systemic effect. We observed increased numbers of circulating VEGFR2(+)/CD11b(-) cells in the VEGF-treated mice by fluorescence-activated cell sorting analysis, which likely represent an endothelial precursor population. In diabetic mice with bone marrow replaced by that of tie2/lacZ mice we demonstrate that the local recruitment of bone marrow-derived endothelial lineage lacZ+ cells was augmented by topical VEGF. We conclude that topical VEGF is able to improve wound healing by locally up-regulating growth factors important for tissue repair and by systemically mobilizing bone marrow-derived cells, including a population that contributes to blood vessel formation, and recruiting these cells to the local wound environment where they are able to accelerate repair. Thus, VEGF therapy may be useful in the treatment of diabetic complications characterized by impaired neovascularization.


Assuntos
Diabetes Mellitus Tipo 2/fisiopatologia , Proteínas Recombinantes/uso terapêutico , Fator A de Crescimento do Endotélio Vascular/uso terapêutico , Cicatrização/efeitos dos fármacos , Animais , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Feminino , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Substâncias de Crescimento/genética , Mobilização de Células-Tronco Hematopoéticas , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/efeitos dos fármacos , Pele/patologia , beta-Galactosidase/genética
3.
Plast Reconstr Surg ; 113(1): 284-93, 2004 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-14707648

RESUMO

Tissue ischemia remains a common problem in plastic surgery and one for which proangiogenic approaches have been investigated. Given the recent discovery of circulating endothelial stem or progenitor cells that are able to form new blood vessels, the authors sought to determine whether these cells might selectively traffic to regions of tissue ischemia and induce neovascularization. Endothelial progenitor cells were isolated from the peripheral blood of healthy human volunteers and expanded ex vivo for 7 days. Elevation of a cranially based random-pattern skin flap was performed in nude mice, after which they were injected with fluorescent-labeled endothelial progenitor cells (5 x 10(5); n = 15), fluorescent-labeled human microvascular endothelial cells (5 x 10(5); n = 15), or media alone (n = 15). Histologic examination demonstrated that endothelial progenitor cells were recruited to ischemic tissue and first appeared by postoperative day 3. Subsequently, endothelial progenitor cell numbers increased exponentially over time for the remainder of the study [0 cells/mm2 at day 0 (n = 3), 9.6 +/- 0.9 cells/mm2 at day 3 (n = 3), 24.6 +/- 1.5 cells/mm2 at day 7 (n = 3), and 196.3 +/- 9.6 cells/mm2 at day 14 (n = 9)]. At all time points, endothelial progenitor cells localized preferentially to ischemic tissue and healing wound edges, and were not observed in normal, uninjured tissues. Endothelial progenitor cell transplantation led to a statistically significant increase in vascular density in ischemic tissues by postoperative day 14 [28.7 +/- 1.2 in the endothelial progenitor cell group (n = 9) versus 18 +/- 1.1 in the control media group (n = 9) and 17.7 +/- 1.0 in the human microvascular endothelial cell group (n = 9; p < 0.01)]. Endothelial progenitor cell transplantation also showed trends toward increased flap survival [171.2 +/- 18 mm2 in the endothelial progenitor cell group (n = 12) versus 134.2 +/- 10 mm2 in the media group (n = 12) and 145.0 +/- 13 mm2 in the human microvascular endothelial cell group (n = 12)], but this did not reach statistical significance. These findings indicate that local tissue ischemia is a potent stimulus for the recruitment of circulating endothelial progenitor cells. Systemic delivery of endothelial progenitor cells increased neovascularization and suggests that autologous endothelial progenitor cell transplantation may have a role in the salvage of ischemic tissue.


Assuntos
Endotélio Vascular/transplante , Isquemia/fisiopatologia , Neovascularização Fisiológica , Transplante de Células-Tronco , Retalhos Cirúrgicos/irrigação sanguínea , Adulto , Animais , Capilares/patologia , Células Cultivadas , Endotélio Vascular/citologia , Endotélio Vascular/fisiologia , Sobrevivência de Enxerto , Humanos , Isquemia/patologia , Camundongos , Camundongos Nus , Neovascularização Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...