Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Peptides ; 73: 67-76, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26348269

RESUMO

Exogenously administered chemically modified apelin-12 (MA) has been shown to exhibit protective effects in myocardial ischemia/reperfusion (I/R) injury. They include reduction of ROS formation, cell death and cardiometabolic abnormalities. The aim of the present study was to explore the role of the underlying signaling mechanisms involved in cardioprotection afforded by MA. Isolated perfused working rat hearts subjected to global ischemia and anaesthetized rats in vivo exposed to LAD coronary artery occlusion were used. Myocardial infarct size, cell membrane damage, cardiac dysfunction and metabolic state of the heart were used as indices of I/R injury at the end of reperfusion. Administration of specific inhibitors of MEK1/2, PI3K, NO synthase (NOS) or the mitochondrial ATP-sensitive K(+) (mito KATP) channels (UO126, LY294002, L-NAME or 5-hydroxydecanoate, respectively) reduced protective efficacy of MA in both models of I/R injury. This was evidenced by abrogation of infarct size limitation, deterioration of cardiac function recovery, and attenuation of metabolic restoration and sarcolemmal integrity. An enhancement of functional and metabolic recovery in isolated reperfused hearts treated with MA was suppressed by U-73122, chelerythrine, amiloride or KB-R7943 (inhibitors of phospholipase С (PLC), protein kinase C (PKC), Na(+)/H(+) or Na(+)/Ca(2+) exchange, respectively). Additionally, co-infusion of MA with amiloride or L-NAME reduced the integrity of cell membranes at early reperfusion compared with the effect of peptide alone. In conclusion, cardioprotection with MA is mediated by signaling via PLC and survival kinases, PKC, PI3K, and MEK1/2, with activation of downstream targets, NOS and mito KATP channels, and the sarcolemmal Na(+)/H(+) and Na(+)/Ca(2+) exchangers.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Membrana Celular/metabolismo , Membrana Celular/patologia , Peptídeos e Proteínas de Sinalização Intercelular/química , Masculino , Proteínas Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/patologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo
2.
Br J Pharmacol ; 172(12): 2933-45, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25521429

RESUMO

BACKGROUND AND PURPOSE: Mitochondria-derived oxidative stress is believed to be crucially involved in cardiac ischaemia reperfusion (I/R) injury, although currently no therapies exist that specifically target mitochondrial reactive oxygen species (ROS) production. The present study was designed to evaluate the potential effects of the structural analogues of apelin-12, an adipocyte-derived peptide, on mitochondrial ROS generation, cardiomyocyte apoptosis, and metabolic and functional recovery to myocardial I/R injury. EXPERIMENTAL APPROACH: In cultured H9C2 cardiomyoblasts and adult cardiomyocytes, oxidative stress was induced by hypoxia reoxygenation. Isolated rat hearts were subjected to 35 min of global ischaemia and 30 min of reperfusion. Apelin-12, apelin-13 and structural apelin-12 analogues, AI and AII, were infused during 5 min prior to ischaemia. KEY RESULTS: In cardiac cells, mitochondrial ROS production was inhibited by the structural analogues of apelin, AI and AII, in comparison with the natural peptides, apelin-12 and apelin-13. Treatment of cardiomyocytes with AI and AII decreased cell apoptosis concentration-dependently. In a rat model of I/R injury, pre-ischaemic infusion of AI and AII markedly reduced ROS formation in the myocardial effluent and attenuated cell membrane damage. Prevention of oxidative damage by AI and AII was associated with the improvement of functional and metabolic recovery after I/R in the heart. CONCLUSIONS AND IMPLICATIONS: These data provide the evidence for the potential of the structural apelin analogues in selective reduction of mitochondrial ROS generation and myocardial apoptosis and form the basis for a promising therapeutic strategy in the treatment of oxidative stress-related heart disease.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Animais , Apoptose/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/patologia , Relação Dose-Resposta a Droga , Peptídeos e Proteínas de Sinalização Intercelular/administração & dosagem , Peptídeos e Proteínas de Sinalização Intercelular/química , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ratos , Ratos Wistar
3.
J Surg Res ; 194(1): 18-24, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25491175

RESUMO

BACKGROUND: C-terminal fragments of adipokine apelin are able to attenuate myocardial ischemia-reperfusion (I/R) injury, but whether their effects are manifested during cardioplegic arrest remain obscure. This study was designed to evaluate the efficacy of natural apelin-12 (H-Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Met-Pro-Phe-OH, A12) and its novel structural analogs (H-(N(α)Me)Arg-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-OH, AI, and N(G)-Arg(N(G)NO2)-Pro-Arg-Leu-Ser-His-Lys-Gly-Pro-Nle-Pro-Phe-NH2, AII) as additives to crystalloid cardioplegia and explore benefits of early reperfusion with these peptides. METHODS: Isolated working rat hearts subjected to normothermic global ischemia and further reperfusion were used. St. Thomas' Hospital cardioplegic solution No.2 (STH2) containing 140 µM A12, AI, or AII was infused for 5 min at 25 °C before ischemia. In separate series, peptide administration was used for 5 min after ischemia. Metabolic state of the hearts was evaluated by myocardial content of high energy phosphates and lactate. Lactate dehydrogenase (LDH) leakage was assessed in myocardial effluent on early reperfusion. RESULTS: Addition of the peptides to STH2 enhanced functional and metabolic recovery of reperfused hearts compared with those of control (STH2 without additives). Cardioplegia with analog AII was the most effective and accompanied by a reduction of postischemic LDH leakage. Infusion of A12, AI, or AII after ischemia improved the majority indices of cardiac function and metabolic state of the heart by the end of reperfusion. However, the overall protective effect of the peptides was less than when they were added to STH2. CONCLUSIONS: Enhancement of apelin bioavailability may minimize myocardial I/R damage during cardiac surgery. Structural analogs of A12 are promising components of clinical cardioplegic solutions.


Assuntos
Parada Cardíaca Induzida , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Soluções Isotônicas/química , Sequência de Aminoácidos , Animais , Soluções Cristaloides , L-Lactato Desidrogenase/metabolismo , Masculino , Dados de Sequência Molecular , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Ratos Wistar
4.
J Pharmacol Pharmacother ; 4(3): 198-203, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23960425

RESUMO

OBJECTIVE: To examine cardioprotective effects of Ρ-terminal fragment of adipokine apelin-12 (A12), its novel structural analogue [MeArg(1), NLe(10)]-A12 (I), and [d-Ala(12)]-A12 (II), a putative antagonist of APJ receptor, employing in vivo model of ischemia/reperfusion (I/R) injury. MATERIALS AND METHODS: Peptides were synthesized by the automatic solid phase method using Fmoc technology. Anesthetized open-chest male Wistar rats were subjected to left anterior descending (LAD) coronary artery occlusion and coronary reperfusion. Hemodynamic variables and electrocardiogram (ECG) were monitored throughout the experiment. Myocardial injury was assessed by infarct size (IS), activity of necrosis markers in plasma, and metabolic state of the area at risk (AAR). RESULTS: Intravenous injection of A12, I, or II at the onset of reperfusion led to a transient reduction of the mean arterial pressure. A12 or I administration decreased the percent ratio of IS/AAR by 40% and 30%, respectively, compared with control animals which received saline. Both peptides improved preservation of high-energy phosphates, reduced lactate accumulation in the AAR, and lowered CK-MB and LDH activities in plasma at the end of reperfusion compared with these indices in control. Treatment with II did not significantly affect either the IS/AAR, % ratio, or activities of both markers of necrosis compared with control. The overall metabolic protection of the AAR in the treated groups increased in the following rank: II < A12 < I. CONCLUSIONS: The structural analogue of apelin-12 [MeArg(1), NLe(10)]-A12 may be a promising basis to create a new drug for the treatment of acute coronary syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...