Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
medRxiv ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38854100

RESUMO

INTRODUCTION: A recently developed mild behavioral impairment (MBI) diagnostic framework standardizes the early characterization of neuropsychiatric symptoms in older adults. However, the links between MBI, brain function, and Alzheimer's disease (AD) biomarkers are unclear. METHODS: Using data from 128 participants with diagnosis of amnestic mild cognitive impairment and mild dementia - Alzheimer's type, we test a novel model assessing direct relationships between AD biomarker status and MBI symptoms, as well as mediated effects through segregation of the salience and default-mode networks. RESULTS: We identified a mediated effect of tau positivity on MBI through functional segregation of the salience network from the other high-level, association networks. There were no direct effects of AD biomarkers status on MBI. DISCUSSION: Our findings suggest an indirect role of tau pathology in MBI through brain network dysfunction and emphasize the role of the salience network in mediating relationships between neuropathological changes and behavioral manifestations.

2.
J Alzheimers Dis Rep ; 8(1): 531-542, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549634

RESUMO

Background: Social engagement has beneficial effects during cognitive aging. Large-scale cognitive brain network functions are implicated in both social behaviors and cognition. Objective: We evaluated associations between functional connectivity (FC) of large-scale brain cognitive networks and social engagement, characterized by self-reported social network size and contact frequency. We subsequently tested large-scale brain network FC as a potential mediator of the beneficial relationship between social engagement and cognitive performance. Methods: 112 older adults (70.7±7.3 years, range 54.6-89.7; 84 women) completed the Lubben Social Network Scale 6 (LSNS-6), National Alzheimer's Coordinating Center (NACC) Uniform Data Set 3 (UDS-3) cognitive battery, and resting state fMRI. We completed seed-based correlational analysis in the default mode and salience networks. Significant associations between social engagement scores and cognitive performance, as well as between social engagement and FC of brain networks, informed the construction of mediation models. Results: Social engagement was significantly associated with executive function and global cognition, with greater social engagement associated with better cognitive performance. Social engagement was significantly associated with salience network FC, with greater social engagement associated with higher connectivity. Salience network FC partially mediated associations between social engagement and both executive function and global cognition. Conclusions: Our results suggest that the salience network is a key mediator of the beneficial relationship between social engagement and cognition in older adults.

3.
Artigo em Inglês | MEDLINE | ID: mdl-37648206

RESUMO

BACKGROUND: Patients with schizophrenia show abnormal gaze processing, which is associated with social dysfunction. These abnormalities are related to aberrant connectivity among brain regions that are associated with visual processing, social cognition, and cognitive control. In this study, we investigated 1) how effective connectivity during gaze processing is disrupted in schizophrenia and 2) how this may contribute to social dysfunction and clinical symptoms. METHODS: Thirty-nine patients with schizophrenia/schizoaffective disorder (SZ) and 33 healthy control participants completed an eye gaze processing task during functional magnetic resonance imaging. Participants viewed faces with different gaze angles and performed explicit and implicit gaze processing. Four brain regions-the secondary visual cortex, posterior superior temporal sulcus, inferior parietal lobule, and posterior medial frontal cortex-were identified as nodes for dynamic causal modeling analysis. RESULTS: Both the SZ and healthy control groups showed similar model structures for general gaze processing. Explicit gaze discrimination led to changes in effective connectivity, including stronger excitatory, bottom-up connections from the secondary visual cortex to the posterior superior temporal sulcus and inferior parietal lobule and inhibitory, top-down connections from the posterior medial frontal cortex to the secondary visual cortex. Group differences in top-down modulation from the posterior medial frontal cortex to the posterior superior temporal sulcus and inferior parietal lobule were noted, such that these inhibitory connections were attenuated in the healthy control group but further strengthened in the SZ group. Connectivity was associated with social dysfunction and symptom severity. CONCLUSIONS: The SZ group showed notably stronger top-down inhibition during explicit gaze discrimination, which was associated with more social dysfunction but less severe symptoms among patients. These findings help pinpoint neural mechanisms of aberrant gaze processing and may serve as future targets for interventions that combine neuromodulation with social cognitive training.


Assuntos
Fixação Ocular , Esquizofrenia , Humanos , Interação Social , Encéfalo , Lobo Temporal
4.
J Psychopathol Clin Sci ; 132(6): 733-748, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37384487

RESUMO

BACKGROUND: Gaze perception is a basic building block of social cognition, which is impaired in schizophrenia (SZ) and contributes to functional outcomes. Few studies, however, have investigated neural underpinnings of gaze perception and their relation to social cognition. We address this gap. METHOD: We recruited 77 SZ patients and 71 healthy controls, who completed various social-cognition tasks. During functional magnetic resonance imaging, participants (62 SZ, 54 controls) completed a gaze-perception task, where they judged whether faces with varying gaze angles were self-directed or averted; as a control condition, participants identified stimulus gender. Activation estimates were extracted based on (a) task versus baseline, (b) gaze-perception versus gender-identification, (c) parametric modulation by perception of stimuli as self-directed versus averted, and (d) parametric modulation by stimulus gaze angle. We used latent variable analysis to test associations among diagnostic group, brain activation, gaze perception, and social cognition. RESULTS: Preferential activation to gaze perception was observed throughout dorsomedial prefrontal cortex, superior temporal sulcus, and insula. Activation was modulated by stimulus gaze angle and perception of stimuli as self-directed versus averted. More precise gaze perception and higher task-related activation were associated with better social cognition. Patients with SZ showed hyperactivation within left pre-/postcentral gyrus, which was associated with more precise gaze perception and fewer symptoms and thus may be a compensatory mechanism. CONCLUSIONS: Neural and behavioral indices of gaze perception were related to social cognition, across patients and controls. This suggests gaze perception is an important perceptual building block for more complex social cognition. Results are discussed in the context of dimensional psychopathology and clinical heterogeneity. (PsycInfo Database Record (c) 2023 APA, all rights reserved).


Assuntos
Esquizofrenia , Humanos , Cognição Social , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Sistema Nervoso , Mapeamento Encefálico
5.
Brain Imaging Behav ; 17(5): 507-518, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37256494

RESUMO

Brain gray matter (GM) reductions have been reported after breast cancer chemotherapy, typically in small and/or cross-sectional cohorts, most commonly using voxel-based morphometry (VBM). There has been little examination of approaches such as deformation-based morphometry (DBM), machine-learning-based brain aging metrics, or the relationship of clinical and demographic risk factors to GM reduction. This international data pooling study begins to address these questions. Participants included breast cancer patients treated with (CT+, n = 183) and without (CT-, n = 155) chemotherapy and noncancer controls (NC, n = 145), scanned pre- and post-chemotherapy or comparable intervals. VBM and DBM examined GM volume. Estimated brain aging was compared to chronological aging. Correlation analyses examined associations between VBM, DBM, and brain age, and between neuroimaging outcomes, baseline age, and time since chemotherapy completion. CT+ showed longitudinal GM volume reductions, primarily in frontal regions, with a broader spatial extent on DBM than VBM. CT- showed smaller clusters of GM reduction using both methods. Predicted brain aging was significantly greater in CT+ than NC, and older baseline age correlated with greater brain aging. Time since chemotherapy negatively correlated with brain aging and annual GM loss. This large-scale data pooling analysis confirmed findings of frontal lobe GM reduction after breast cancer chemotherapy. Milder changes were evident in patients not receiving chemotherapy. CT+ also demonstrated premature brain aging relative to NC, particularly at older age, but showed evidence for at least partial GM recovery over time. When validated in future studies, such knowledge could assist in weighing the risks and benefits of treatment strategies.


Assuntos
Neoplasias da Mama , Substância Cinzenta , Humanos , Feminino , Substância Cinzenta/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/tratamento farmacológico , Estudos Transversais , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Envelhecimento
6.
Psychiatry Res Neuroimaging ; 331: 111636, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37001298

RESUMO

Interoception refers to the processing, integration, and interpretation of bodily signals by the brain. Interoception is key to not only basic survival, but also motivational and affective functioning. There is emerging evidence suggesting altered interoception in schizophrenia, but few studies have explored potential neural underpinnings. The current study aims to investigate the anatomical connectivity of a previously identified interoception network in individuals with schizophrenia, and the relationship between network structural connectivity and both emotional functioning and clinical symptoms. Thirty-five participants with schizophrenia (SZ) and 36 healthy control participants (HC) underwent diffusion tensor imaging (DTI) and performed tasks measuring emotional functioning. Probabilistic tractography was used to identify white matter tracts connecting key hubs in an interoception network. Microstructural integrity of these tracts was compared across groups and correlated with measures of emotional functioning and symptom severity. Compared with HC, SZ exhibited altered structural connectivity in the interoception network. In HC, the structural connectivity of the network was significantly correlated with emotion recognition, supporting a link between the interoception network and emotional functioning. However, this correlation was much weaker in SZ. These findings suggest that altered interoception may have implications for illness mechanisms of schizophrenia, especially in relation to emotional deficits.


Assuntos
Interocepção , Esquizofrenia , Humanos , Esquizofrenia/diagnóstico por imagem , Imagem de Tensor de Difusão/métodos , Imageamento por Ressonância Magnética , Encéfalo/diagnóstico por imagem
7.
Cereb Cortex ; 32(22): 5230-5241, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-35134853

RESUMO

Spatial navigation is essential for everyday life and relies on complex network-level interactions. Recent evidence suggests that transcranial direct current stimulation (tDCS) can influence the activity of large-scale functional brain networks. We characterized brain-wide changes in functional network segregation (i.e. the balance of within vs. between-network connectivity strength) induced by high-definition (HD) tDCS in older adults with mild cognitive impairment (MCI) during virtual spatial navigation. Twenty patients with MCI and 22 cognitively intact older adults (healthy controls-HC) underwent functional magnetic resonance imaging following two counterbalanced HD-tDCS sessions (one active, one sham) that targeted the right parietal cortex (center anode at P2) and delivered 2 mA for 20 min. Compared to HC, MCI patients showed lower brain-wide network segregation following sham HD-tDCS. However, following active HD-tDCS, MCI patients' network segregation increased to levels similar to those in HC, suggesting functional normalization. Follow-up analyses indicated that the increase in network segregation for MCI patients was driven by HD-tDCS effects on the "high-level"/association brain networks, in particular the dorsal-attention and default-mode networks. HD-tDCS over the right parietal cortex may normalize the segregation/integration balance of association networks during spatial navigation in MCI patients, highlighting its potential to restore brain activity in Alzheimer's disease.


Assuntos
Disfunção Cognitiva , Navegação Espacial , Estimulação Transcraniana por Corrente Contínua , Humanos , Idoso , Estimulação Transcraniana por Corrente Contínua/métodos , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/terapia , Disfunção Cognitiva/etiologia , Mapeamento Encefálico , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia
8.
J Alzheimers Dis ; 84(3): 1091-1102, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34602464

RESUMO

BACKGROUND: Prior research, primarily with young adults, suggests transcranial direct current stimulation (tDCS) effects are driven by the primary excitatory and/or inhibitory neurotransmitters, glutamate, and gamma-aminobutyric acid (GABA), respectively. OBJECTIVE: We examined the neurometabolic mechanisms of tDCS in older adults with and without mild cognitive impairment (MCI). METHODS: We used data from a double-blind, cross-over, randomized controlled trial (NCT01958437) in 32 older adults to evaluate high definition (HD)-tDCS-induced changes in glutamate and GABA via magnetic resonance spectroscopy (MRS). Participants underwent MRS following two counterbalanced HD-tDCS sessions (one active, one sham) that targeted the right superior parietal cortex (center anode at P2) and delivered 2mA for 20 minutes. RESULTS: Relative to sham, and when co-varying for MRS voxel overlap and right superior parietal volume, active HD-tDCS significantly increased GABA and decreased the ratio of glutamate to GABA. No changes were observed in a left prefrontal control MRS voxel. Although we did not find a significant correlation between strength of delivered current (measured via MRI-based computational modeling) and neurometabolite change, there was a robust positive relationship between the volume of right superior parietal cortex and neurometabolite change. CONCLUSION: Our preliminary findings of increased GABA and reduced glutamate/GABA ratio raise the possibility that (HD-)tDCS effects differ by age. Moreover, age- and disease-related regional brain volume loss may be especially important to consider when planning future studies. Replication would emphasize the importance of developing population-specific tDCS parameters that consider structural and physiologic changes associated with "normal" and pathological aging.


Assuntos
Disfunção Cognitiva/metabolismo , Ácido Glutâmico/metabolismo , Córtex Pré-Frontal/metabolismo , Estimulação Transcraniana por Corrente Contínua , Ácido gama-Aminobutírico/metabolismo , Idoso , Método Duplo-Cego , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Córtex Pré-Frontal/fisiologia
9.
Psychiatry Res Neuroimaging ; 315: 111340, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34358977

RESUMO

Bipolar disorder (BD) is associated with a range of social cognitive deficits. This study investigated the functioning of the mentalizing brain system in BD probed by an eye gaze perception task during fMRI. Compared with healthy controls (n = 21), BD participants (n = 14) showed reduced preferential activation for self-directed gaze discrimination in the medial prefrontal cortex (mPFC) and temporo-parietal junction (TPJ), which was associated with poorer cognition/social cognition. Aberrant functions of the mentalizing system should be further investigated as marker of social dysfunction and treatment targets.


Assuntos
Transtorno Bipolar , Mentalização , Transtorno Bipolar/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Fixação Ocular , Humanos
10.
Arthritis Rheumatol ; 73(11): 2127-2137, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33982890

RESUMO

OBJECTIVE: There is increasing demand for prediction of chronic pain treatment outcomes using machine-learning models, in order to improve suboptimal pain management. In this exploratory study, we used baseline brain functional connectivity patterns from chronic pain patients with fibromyalgia (FM) to predict whether a patient would respond differentially to either milnacipran or pregabalin, 2 drugs approved by the US Food and Drug Administration for the treatment of FM. METHODS: FM patients participated in 2 separate double-blind, placebo-controlled crossover studies, one evaluating milnacipran (n = 15) and one evaluating pregabalin (n = 13). Functional magnetic resonance imaging during rest was performed before treatment to measure intrinsic functional brain connectivity in several brain regions involved in pain processing. A support vector machine algorithm was used to classify FM patients as responders, defined as those with a ≥20% improvement in clinical pain, to either milnacipran or pregabalin. RESULTS: Connectivity patterns involving the posterior cingulate cortex (PCC) and dorsolateral prefrontal cortex (DLPFC) individually classified pregabalin responders versus milnacipran responders with 77% accuracy. Performance of this classification improved when both PCC and DLPFC connectivity patterns were combined, resulting in a 92% classification accuracy. These results were not related to confounding factors, including head motion, scanner sequence, or hardware status. Connectivity patterns failed to differentiate drug nonresponders across the 2 studies. CONCLUSION: Our findings indicate that brain functional connectivity patterns used in a machine-learning framework differentially predict clinical response to pregabalin and milnacipran in patients with chronic pain. These findings highlight the promise of machine learning in pain prognosis and treatment prediction.


Assuntos
Analgésicos/uso terapêutico , Encéfalo/diagnóstico por imagem , Dor Crônica/diagnóstico por imagem , Fibromialgia/diagnóstico por imagem , Milnaciprano/uso terapêutico , Pregabalina/uso terapêutico , Adulto , Biomarcadores , Dor Crônica/tratamento farmacológico , Estudos Cross-Over , Método Duplo-Cego , Feminino , Fibromialgia/tratamento farmacológico , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Neuroimagem , Máquina de Vetores de Suporte , Resultado do Tratamento , Adulto Jovem
11.
Hum Brain Mapp ; 42(6): 1888-1909, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33534925

RESUMO

Demanding cognitive functions like working memory (WM) depend on functional brain networks being able to communicate efficiently while also maintaining some degree of modularity. Evidence suggests that aging can disrupt this balance between integration and modularity. In this study, we examined how cognitive training affects the integration and modularity of functional networks in older and younger adults. Twenty three younger and 23 older adults participated in 10 days of verbal WM training, leading to performance gains in both age groups. Older adults exhibited lower modularity overall and a greater decrement when switching from rest to task, compared to younger adults. Interestingly, younger but not older adults showed increased task-related modularity with training. Furthermore, whereas training increased efficiency within, and decreased participation of, the default-mode network for younger adults, it enhanced efficiency within a task-specific salience/sensorimotor network for older adults. Finally, training increased segregation of the default-mode from frontoparietal/salience and visual networks in younger adults, while it diffusely increased between-network connectivity in older adults. Thus, while younger adults increase network segregation with training, suggesting more automated processing, older adults persist in, and potentially amplify, a more integrated and costly global workspace, suggesting different age-related trajectories in functional network reorganization with WM training.


Assuntos
Envelhecimento/fisiologia , Conectoma , Rede de Modo Padrão/fisiologia , Memória de Curto Prazo/fisiologia , Rede Nervosa/fisiologia , Prática Psicológica , Adolescente , Adulto , Fatores Etários , Idoso , Rede de Modo Padrão/diagnóstico por imagem , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
12.
NMR Biomed ; 34(5): e4218, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-31854045

RESUMO

The semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence provides single-shot full intensity signal with clean localization and minimal chemical shift displacement error and was recommended by the international MRS Consensus Group as the preferred localization sequence at high- and ultra-high fields. Across-vendor standardization of the sLASER sequence at 3 tesla has been challenging due to the B1 requirements of the adiabatic inversion pulses and maximum B1 limitations on some platforms. The aims of this study were to design a short-echo sLASER sequence that can be executed within a B1 limit of 15 µT by taking advantage of gradient-modulated RF pulses, to implement it on three major platforms and to evaluate the between-vendor reproducibility of its perfomance with phantoms and in vivo. In addition, voxel-based first and second order B0 shimming and voxel-based B1 adjustments of RF pulses were implemented on all platforms. Amongst the gradient-modulated pulses considered (GOIA, FOCI and BASSI), GOIA-WURST was identified as the optimal refocusing pulse that provides good voxel selection within a maximum B1 of 15 µT based on localization efficiency, contamination error and ripple artifacts of the inversion profile. An sLASER sequence (30 ms echo time) that incorporates VAPOR water suppression and 3D outer volume suppression was implemented with identical parameters (RF pulse type and duration, spoiler gradients and inter-pulse delays) on GE, Philips and Siemens and generated identical spectra on the GE 'Braino' phantom between vendors. High-quality spectra were consistently obtained in multiple regions (cerebellar white matter, hippocampus, pons, posterior cingulate cortex and putamen) in the human brain across vendors (5 subjects scanned per vendor per region; mean signal-to-noise ratio > 33; mean water linewidth between 6.5 Hz to 11.4 Hz). The harmonized sLASER protocol is expected to produce high reproducibility of MRS across sites thereby allowing large multi-site studies with clinical cohorts.


Assuntos
Lasers , Imageamento por Ressonância Magnética/normas , Adulto , Simulação por Computador , Creatinina/metabolismo , Humanos , Metaboloma , Imagens de Fantasmas , Ondas de Rádio , Padrões de Referência , Razão Sinal-Ruído
13.
Schizophr Res ; 229: 112-121, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33229223

RESUMO

BACKGROUND: Abnormal eye gaze perception is related to symptoms and social functioning in schizophrenia. However, little is known about the brain network mechanisms underlying these abnormalities. Here, we employed dynamic causal modeling (DCM) of fMRI data to discover aberrant effective connectivity within networks associated with eye gaze processing in schizophrenia. METHODS: Twenty-seven patients (schizophrenia/schizoaffective disorder, SZ) and 22 healthy controls (HC) completed an eye gaze processing task during fMRI. Participants viewed faces with different gaze angles and performed explicit gaze discrimination (Gaze: "Looking at you?" yes/no) or implicit gaze processing (Gender: "male or female?"). Four brain regions, the secondary visual cortex (Vis), posterior superior temporal sulcus (pSTS), inferior parietal lobule (IPL), and posterior medial frontal cortex (pMFC) were identified as nodes for subsequent DCM analysis. RESULTS: SZ and HC showed similar generative model structure, but SZ showed altered connectivity for specific self-connections, inter-regional connections during all gaze processing (reduced excitatory bottom-up and enhanced inhibitory top-down connections), and modulation by explicit gaze discrimination (increased frontal inhibition of visual cortex). Altered effective connectivity was significantly associated with poorer social cognition and functioning. CONCLUSIONS: General gaze processing in SZ is associated with distributed cortical dysfunctions and bidirectional connectivity between regions, while explicit gaze discrimination involves predominantly top-down abnormalities in the visual system. These results suggest plausible neural mechanisms underpinning gaze processing deficits and may serve as bio-markers for intervention.


Assuntos
Esquizofrenia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Feminino , Fixação Ocular , Humanos , Imageamento por Ressonância Magnética , Masculino , Esquizofrenia/complicações , Esquizofrenia/diagnóstico por imagem
14.
Artigo em Inglês | MEDLINE | ID: mdl-33072887

RESUMO

Social dysfunction is an intractable problem in a wide spectrum of psychiatric illnesses, undermining patients' capacities for employment, independent living, and maintaining meaningful relationships. Identifying common markers of social impairment across disorders and understanding their mechanisms are prerequisites to developing targeted neurobiological treatments that can be applied productively across diagnoses and illness stages to improve functional outcome. This project focuses on eye gaze perception, the ability to accurately and efficiently discriminate others' gaze direction, as a potential biomarker of social functioning that cuts across psychiatric diagnoses. This premise builds on both the monkey and human literatures showing gaze perception as a basic building block supporting higher-level social communication and social development, and reports of abnormal gaze perception in multiple psychiatric conditions accompanied by prominent social dysfunction (e.g., psychosis-spectrum disorders, autism-spectrum disorders, social phobia). A large sample (n = 225) of adolescent and young adult (age 14-30) psychiatric patients (regardless of diagnosis) with various degrees of impaired social functioning, and demographically-matched healthy controls (n = 75) will be recruited for this study. Participant's psychiatric phenotypes, cognition, social cognition, and community functioning will be dimensionally characterized. Eye gaze perception will be assessed using a psychophysical task, and two metrics (precision, self-referential bias) that respectively tap into gaze perception disturbances at the visual perceptual and interpretation levels, independent of general deficits, will be derived using hierarchical Bayesian modeling. A subset of the participants (150 psychiatric patients, 75 controls) will additionally undergo multimodal fMRI to determine the functional and structural brain network features of altered gaze perception. The specific aims of this project are three-fold: (1) Determine the generality of gaze perception disturbances in psychiatric patients with prominent social dysfunction; (2) Map behavioral indices of gaze perception disturbances to dimensions of psychiatric phenotypes and core functional domains; and (3) Identify the neural correlates of altered gaze perception in psychiatric patients with social dysfunction. Successfully completing these specific aims will identify the specific basic deficits, clinical profile, and underlying neural circuits associated with social dysfunction that can be used to guide targeted, personalized treatments, thus advancing NIMH's Strategic Objective 1 (describe neural circuits associated with mental illnesses and map the connectomes for mental illnesses) and Objective 3 (develop new treatments based on discoveries in neuroscience and behavioral science).

15.
Neuroimage Clin ; 27: 102350, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32736324

RESUMO

Real-time functional magnetic resonance imaging neurofeedback (rtfMRI-nf) has emerged in recent years as an imaging modality used to examine volitional control over targeted brain activity. rtfMRI-nf has also been applied clinically as a way to train individuals to self-regulate areas of the brain, or circuitry, involved in various disorders. One such application of rtfMRI-nf has been in the domain of addictive behaviors, including substance use. Given the pervasiveness of substance use and the challenges of existing treatments to sustain abstinence, rtfMRI-nf has been identified as a promising treatment tool. rtfMRI-nf has also been used in basic science research in order to test the ability to modulate brain function involved in addiction. This review focuses first on providing an overview of recent rtfMRI-nf studies in substance-using populations, specifically nicotine, alcohol, and cocaine users, aimed at reducing craving-related brain activation. Next, rtfMRI-nf studies targeting reward responsivity and emotion regulation in healthy samples are reviewed in order to examine the extent to which areas of the brain involved in addiction can be self-regulated using neurofeedback. We propose that future rtfMRI-nf studies could be strengthened by improvements to study design, sample selection, and more robust strategies in the development and assessment of rtfMRI-nf as a clinical treatment. Recommendations for ways to accomplish these improvements are provided. rtfMRI-nf holds much promise as an imaging modality that can directly target key brain regions involved in addiction, however additional studies are needed in order to establish rtfMRI-nf as an effective, and practical, treatment for addiction.


Assuntos
Comportamento Aditivo , Neurorretroalimentação , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética
16.
Neuroimage ; 217: 116887, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32376302

RESUMO

Brain activity typically increases with increasing working memory (WM) load, regardless of age, before reaching an apparent ceiling. However, older adults exhibit greater brain activity and reach ceiling at lower loads than younger adults, possibly reflecting compensation at lower loads and dysfunction at higher loads. We hypothesized that WM training would bolster neural efficiency, such that the activation peak would shift towards higher memory loads after training. Pre-training, older adults showed greater recruitment of the WM network than younger adults across all loads, with decline at the highest load. Ten days of adaptive training on a verbal WM task improved performance and led to greater brain responsiveness at higher loads for both groups. For older adults the activation peak shifted rightward towards higher loads. Finally, training increased task-related functional connectivity in older adults, both within the WM network and between this task-positive network and the task-negative/default-mode network. These results provide new evidence for functional plasticity with training in older adults and identify a potential signature of improvement at the neural level.


Assuntos
Memória de Curto Prazo/fisiologia , Plasticidade Neuronal/fisiologia , Idoso , Envelhecimento/fisiologia , Envelhecimento/psicologia , Encéfalo/diagnóstico por imagem , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Mapeamento Encefálico , Cognição/fisiologia , Função Executiva/fisiologia , Feminino , Humanos , Aprendizagem , Imageamento por Ressonância Magnética , Masculino , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/fisiologia , Vias Neurais/diagnóstico por imagem , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/fisiologia , Desempenho Psicomotor , Adulto Jovem
17.
Neuroimage ; 212: 116663, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32109601

RESUMO

Normal aging is associated with declines in sensorimotor function. Previous studies have linked age-related behavioral declines to decreases in neural differentiation (i.e., dedifferentiation), including decreases in the distinctiveness of neural activation patterns and in the segregation of large-scale neural networks at rest. However, no studies to date have explored the relationship between these two neural measures and whether they explain the same aspects of behavior. To investigate these issues, we collected a battery of sensorimotor behavioral measures in older and younger adults and estimated (a) the distinctiveness of neural representations in sensorimotor cortex and (b) sensorimotor network segregation in the same participants. Consistent with prior findings, sensorimotor representations were less distinct and sensorimotor resting state networks were less segregated in older compared to younger adults. We also found that participants with the most distinct sensorimotor representations exhibited the most segregated sensorimotor networks. However, only sensorimotor network segregation was associated with individual differences in sensorimotor performance, particularly in older adults. These novel findings link network segregation to neural distinctiveness, but also suggest that network segregation may play a larger role in maintaining sensorimotor performance with age.


Assuntos
Envelhecimento/fisiologia , Rede Nervosa/fisiologia , Neurônios , Córtex Sensório-Motor/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Força da Mão/fisiologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Destreza Motora/fisiologia , Tempo de Reação/fisiologia , Adulto Jovem
18.
Neuroimage ; 209: 116536, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31935521

RESUMO

Socioeconomic disadvantage during childhood is associated with a myriad of negative adult outcomes. One mechanism through which disadvantage undermines positive outcomes may be by disrupting the development of self-control. The goal of the present study was to examine pathways from three key indicators of socioeconomic disadvantage - low family income, low maternal education, and neighborhood poverty - to neural and behavioral measures of response inhibition. We utilized data from a representative cohort of 215 twins (ages 7-18 years, 70% male) oversampled for exposure to disadvantage, who participated in the Michigan Twins Neurogenetics Study (MTwiNS), a study within the Michigan State University Twin Registry (MSUTR). Our child-friendly Go/No-Go task activated the bilateral inferior frontal gyrus (IFG), and activation during this task predicted behavioral inhibition performance, extending prior work on adults to youth. Critically, we also found that neighborhood poverty, assessed via geocoding, but not family income or maternal education, was associated with IFG activation, a finding that we replicated in an independent sample of disadvantaged youth. Further, we found that neighborhood poverty predicted response inhibition performance via its effect on IFG activation. These results provide the first mechanistic evidence that disadvantaged contexts may undermine self-control via their effect on the brain. The broader neighborhood, beyond familial contexts, may be critically important for this association, suggesting that contexts beyond the home have profound effects on the developing brain and behaviors critical for future health, wealth, and wellbeing.


Assuntos
Função Executiva/fisiologia , Inibição Psicológica , Pobreza , Córtex Pré-Frontal/fisiologia , Desempenho Psicomotor/fisiologia , Sistema de Registros , Características de Residência , Adolescente , Criança , Feminino , Neuroimagem Funcional , Humanos , Imageamento por Ressonância Magnética , Masculino , Córtex Pré-Frontal/diagnóstico por imagem
19.
Mol Psychiatry ; 25(7): 1526-1536, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-31462766

RESUMO

Medications to treat major depressive disorder (MDD) are not equally effective across patients. Given that neural response to rewards is altered in MDD and given that reward-related circuitry is modulated by dopamine and serotonin, we examined, for the first time, whether reward-related neural activity moderated response to sertraline, an antidepressant medication that targets these neurotransmitters. A total of 222 unmedicated adults with MDD randomized to receive sertraline (n = 110) or placebo (n = 112) in the Establishing Moderators and Biosignatures of Antidepressant Response in Clinical Care (EMBARC) study completed demographic and clinical assessments, and pretreatment functional magnetic resonance imaging while performing a reward task. We tested whether an index of reward system function in the ventral striatum (VS), a key reward circuitry region, moderated differential response to sertraline versus placebo, assessed with the Hamilton Rating Scale for Depression (HSRD) over 8 weeks. We observed a significant moderation effect of the reward index, reflecting the temporal dynamics of VS activity, on week-8 depression levels (Fs ≥ 9.67, ps ≤ 0.002). Specifically, VS responses that were abnormal with respect to predictions from reinforcement learning theory were associated with lower week-8 depression symptoms in the sertraline versus placebo arms. Thus, a more abnormal pattern of pretreatment VS dynamic response to reward expectancy (expected outcome value) and prediction error (difference between expected and actual outcome), likely reflecting serotonergic and dopaminergic deficits, was associated with better response to sertraline than placebo. Pretreatment measures of reward-related VS activity may serve as objective neural markers to advance efforts to personalize interventions by guiding individual-level choice of antidepressant treatment.


Assuntos
Antidepressivos/uso terapêutico , Transtorno Depressivo Maior/tratamento farmacológico , Recompensa , Sertralina/uso terapêutico , Estriado Ventral/efeitos dos fármacos , Adulto , Transtorno Depressivo Maior/fisiopatologia , Feminino , Humanos , Masculino , Estriado Ventral/fisiologia
20.
Int J Psychophysiol ; 154: 93-100, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31783040

RESUMO

Chronic Posttraumatic stress disorder (PTSD), characterized by symptoms of re-experiencing, hyperarousal, and avoidance, is challenging to treat as a significant proportion of patients remain symptomatic following even empirically supported interventions. The current case series investigated the effects of up to 10 sessions of high definition transcranial direct current stimulation (HD-tDCS) on symptoms of PTSD. Participants received HD-tDCS that targeted the right lateral temporal cortex (LTC; center cathode placed over T8), given this region's potential involvement in symptoms of re-experiencing and, possibly, hyperarousal. Five of the six enrolled patients completed at least 8 sessions. Of these five, four showed improvement in symptoms of re-experiencing after HD-tDCS. This improvement was accompanied by connectivity change in the right LTC as well as a larger extended fear network but not a control network that consisted of visual cortex regions; however, the nature of the change varied across participants as some showed increased connectivity whereas others showed decreased connectivity. These preliminary data suggest that HD-tDCS may be beneficial for treatment of specific PTSD symptoms, in at least some individuals, and warrants further investigation.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Estimulação Transcraniana por Corrente Contínua , Medo , Humanos , Transtornos de Estresse Pós-Traumáticos/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...