Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612777

RESUMO

High-grade gliomas (HGGs) and glioblastoma multiforme (GBM) are characterized by a heterogeneous and aggressive population of tissue-infiltrating cells that promote both destructive tissue remodeling and aberrant vascularization of the brain. The formation of defective and permeable blood vessels and microchannels and destructive tissue remodeling prevent efficient vascular delivery of pharmacological agents to tumor cells and are the significant reason why therapeutic chemotherapy and immunotherapy intervention are primarily ineffective. Vessel-forming endothelial cells and microchannel-forming glial cells that recapitulate vascular mimicry have both infiltration and destructive remodeling tissue capacities. The transmembrane protein TMEM230 (C20orf30) is a master regulator of infiltration, sprouting of endothelial cells, and microchannel formation of glial and phagocytic cells. A high level of TMEM230 expression was identified in patients with HGG, GBM, and U87-MG cells. In this study, we identified candidate genes and molecular pathways that support that aberrantly elevated levels of TMEM230 play an important role in regulating genes associated with the initial stages of cell infiltration and blood vessel and microchannel (also referred to as tumor microtubule) formation in the progression from low-grade to high-grade gliomas. As TMEM230 regulates infiltration, vascularization, and tissue destruction capacities of diverse cell types in the brain, TMEM230 is a promising cancer target for heterogeneous HGG tumors.


Assuntos
Glioblastoma , Glioma , Doença de Parkinson , Humanos , Glioblastoma/genética , Proteínas de Membrana/genética , Células Endoteliais , Angiogênese , Glioma/genética , Neuroglia , Neovascularização Patológica/genética
2.
BMC Bioinformatics ; 24(1): 445, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38012590

RESUMO

INTRODUCTION: Single-cell (SC) gene expression analysis is crucial to dissect the complex cellular heterogeneity of solid tumors, which is one of the main obstacles for the development of effective cancer treatments. Such tumors typically contain a mixture of cells with aberrant genomic and transcriptomic profiles affecting specific sub-populations that might have a pivotal role in cancer progression, whose identification eludes bulk RNA-sequencing approaches. We present scMuffin, an R package that enables the characterization of cell identity in solid tumors on the basis of a various and complementary analyses on SC gene expression data. RESULTS: scMuffin provides a series of functions to calculate qualitative and quantitative scores, such as: expression of marker sets for normal and tumor conditions, pathway activity, cell state trajectories, Copy Number Variations, transcriptional complexity and proliferation state. Thus, scMuffin facilitates the combination of various evidences that can be used to distinguish normal and tumoral cells, define cell identities, cluster cells in different ways, link genomic aberrations to phenotypes and identify subtle differences between cell subtypes or cell states. We analysed public SC expression datasets of human high-grade gliomas as a proof-of-concept to show the value of scMuffin and illustrate its user interface. Nevertheless, these analyses lead to interesting findings, which suggest that some chromosomal amplifications might underlie the invasive tumor phenotype and the presence of cells that possess tumor initiating cells characteristics. CONCLUSIONS: The analyses offered by scMuffin and the results achieved in the case study show that our tool helps addressing the main challenges in the bioinformatics analysis of SC expression data from solid tumors.


Assuntos
Variações do Número de Cópias de DNA , Neoplasias , Humanos , Análise da Expressão Gênica de Célula Única , Neoplasias/genética , Transcriptoma , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos
3.
Stem Cell Res ; 61: 102781, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35421844

RESUMO

Congenital Central Hypoventilation Syndrome (CCHS) is a rare disorder of the autonomic nervous system (ANS), characterized by inadequate control of autonomic ventilation and global autonomic dysfunction. Heterozygous polyalanine repeat expansion mutations in exon 3 of the transcription factor Paired-like homeobox 2B (PHOX2B) gene occur in 90% of CCHS cases. In this study, we describe the generation and characterization of two human induced pluripotent stem cell (hiPSC) lines from female CCHS patients carrying a heterozygous + 5 alanine expansion mutation. The generated iPSC lines show a normal karyotype, express pluripotency markers and are able to differentiate into the three germ layers.


Assuntos
Células-Tronco Pluripotentes Induzidas , Feminino , Proteínas de Homeodomínio/genética , Humanos , Hipoventilação/congênito , Mutação/genética , Peptídeos , Apneia do Sono Tipo Central , Fatores de Transcrição/genética
4.
Front Cell Neurosci ; 15: 703431, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867197

RESUMO

Glioblastomas (GBM) are the most aggressive tumors originating in the brain. Histopathologic features include circuitous, disorganized, and highly permeable blood vessels with intermittent blood flow. These features contribute to the inability to direct therapeutic agents to tumor cells. Known targets for anti-angiogenic therapies provide minimal or no effect in overall survival of 12-15 months following diagnosis. Identification of novel targets therefore remains an important goal for effective treatment of highly vascularized tumors such as GBM. We previously demonstrated in zebrafish that a balanced level of expression of the transmembrane protein TMEM230/C20ORF30 was required to maintain normal blood vessel structural integrity and promote proper vessel network formation. To investigate whether TMEM230 has a role in the pathogenesis of GBM, we analyzed its prognostic value in patient tumor gene expression datasets and performed cell functional analysis. TMEM230 was found necessary for growth of U87-MG cells, a model of human GBM. Downregulation of TMEM230 resulted in loss of U87 migration, substratum adhesion, and re-passaging capacity. Conditioned media from U87 expressing endogenous TMEM230 induced sprouting and tubule-like structure formation of HUVECs. Moreover, TMEM230 promoted vascular mimicry-like behavior of U87 cells. Gene expression analysis of 702 patients identified that TMEM230 expression levels distinguished high from low grade gliomas. Transcriptomic analysis of patients with gliomas revealed molecular pathways consistent with properties observed in U87 cell assays. Within low grade gliomas, elevated TMEM230 expression levels correlated with reduced overall survival independent from tumor subtype. Highest level of TMEM230 correlated with glioblastoma and ATP-dependent microtubule kinesin motor activity, providing a direction for future therapeutic intervention. Our studies support that TMEM230 has both glial tumor and endothelial cell intracellular and extracellular functions. Elevated levels of TMEM230 promote glial tumor cell migration, extracellular scaffold remodeling, and hypervascularization and abnormal formation of blood vessels. Downregulation of TMEM230 expression may inhibit both low grade glioma and glioblastoma tumor progression and promote normalization of abnormally formed blood vessels. TMEM230 therefore is both a promising anticancer and antiangiogenic therapeutic target for inhibiting GBM tumor cells and tumor-driven angiogenesis.

5.
FEBS J ; 288(2): 486-506, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32367652

RESUMO

In colon cancer, downregulation of the transmembrane heparan sulfate proteoglycan syndecan-1 (Sdc-1) is associated with increased invasiveness, metastasis, and dedifferentiation. As Sdc-1 modulates signaling pathways relevant to stem cell function, we tested the hypothesis that it may regulate a tumor-initiating cell phenotype. Sdc-1 small-interfering RNA knockdown in the human colon cancer cell lines Caco2 and HT-29 resulted in an increased side population (SP), enhanced aldehyde dehydrogenase 1 activity, and higher expression of CD133, LGR5, EPCAM, NANOG, SRY (sex-determining region Y)-box 2, KLF2, and TCF4/TCF7L2. Sdc-1 knockdown enhanced sphere formation, cell viability, Matrigel invasiveness, and epithelial-to-mesenchymal transition-related gene expression. Sdc-1-depleted HT-29 xenograft growth was increased compared to controls. Decreased Sdc-1 expression was associated with an increased activation of ß1-integrins, focal adhesion kinase (FAK), and wingless-type (Wnt) signaling. Pharmacological FAK and Wnt inhibition blocked the enhanced stem cell phenotype and invasive growth. Sequential flow cytometric SP enrichment substantially enhanced the stem cell phenotype of Sdc-1-depleted cells, which showed increased resistance to doxorubicin chemotherapy and irradiation. In conclusion, Sdc-1 depletion cooperatively enhances activation of integrins and FAK, which then generates signals for increased invasiveness and cancer stem cell properties. Our findings may provide a novel concept to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence. DATABASES: The GEO accession number of the Affymetrix transcriptomic screening is GSE58751.


Assuntos
Neoplasias do Colo/genética , Quinase 1 de Adesão Focal/genética , Regulação Neoplásica da Expressão Gênica , Células-Tronco Neoplásicas/metabolismo , Sindecana-1/genética , Via de Sinalização Wnt/efeitos dos fármacos , Antígeno AC133/genética , Antígeno AC133/metabolismo , Família Aldeído Desidrogenase 1/genética , Família Aldeído Desidrogenase 1/metabolismo , Animais , Benzotiazóis/farmacologia , Células CACO-2 , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Molécula de Adesão da Célula Epitelial/genética , Molécula de Adesão da Célula Epitelial/metabolismo , Quinase 1 de Adesão Focal/antagonistas & inibidores , Quinase 1 de Adesão Focal/metabolismo , Células HT29 , Humanos , Indóis/farmacologia , Integrina beta1/genética , Integrina beta1/metabolismo , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Proteína Homeobox Nanog/genética , Proteína Homeobox Nanog/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Oligopeptídeos/farmacologia , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Proteína da Região Y Determinante do Sexo/genética , Proteína da Região Y Determinante do Sexo/metabolismo , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Sulfonamidas/farmacologia , Sindecana-1/antagonistas & inibidores , Sindecana-1/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Front Cell Dev Biol ; 8: 559554, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102470

RESUMO

Heparan sulfate (HS) is a glycosaminoglycan found mainly in its protein-conjugated form at the cell surface and the extracellular matrix. Its high sulfation degree mediates functional interactions with positively charged amino acids in proteins. 2-O sulfation of iduronic acid and 3-O sulfation of glucosamine in HS are mediated by the sulfotransferases HS2ST and HS3ST, respectively, which are dysregulated in several cancers. Both sulfotransferases regulate breast cancer cell viability and invasion, but their role in cancer stem cells (CSCs) is unknown. Breast CSCs express characteristic markers such as CD44+/CD24-/low , CD133 and ALDH1 and are involved in tumor initiation, formation, and recurrence. We studied the influence of HS2ST1 and HS3ST2 overexpression on the CSC phenotype in breast cancer cell lines representative of the triple-negative (MDA-MB-231) and hormone-receptor positive subtype (MCF-7). The CD44+/CD24-/low phenotype was significantly reduced in MDA-MB-231 cells after overexpression of both enzymes, remaining unaltered in MCF-7 cells. ALDH1 activity was increased after HS2ST1 and HS3ST2 overexpression in MDA-MB-231 cells and reduced after HS2ST1 overexpression in MCF-7 cells. Colony and spheroid formation were increased after HS2ST1 and HS3ST2 overexpression in MCF-7 cells. Moreover, MDA-MB-231 cells overexpressing HS2ST1 formed more colonies and could not generate spheres. The phenotypic changes were associated with complex changes in the expression of the stemness-associated notch and Wnt-signaling pathways constituents, syndecans, heparanase and Sulf1. The results improve our understanding of breast CSC function and mark a subtype-specific impact of HS modifications on the CSC phenotype of triple-negative and hormone receptor positive breast cancer model cell lines.

7.
Front Oncol ; 10: 774, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32477959

RESUMO

The heparan sulfate proteoglycan Syndecan-1 binds cytokines, morphogens and extracellular matrix components, regulating cancer stem cell properties and invasiveness. Syndecan-1 is modulated by the heparan sulfate-degrading enzyme heparanase, but the underlying regulatory mechanisms are only poorly understood. In colon cancer pathogenesis, complex changes occur in the expression pattern of Syndecan-1 and heparanase during progression from well-differentiated to undifferentiated tumors. Loss of Syndecan-1 and increased expression of heparanase are associated with a change in phenotypic plasticity and an increase in invasiveness, metastasis and dedifferentiation. Here we investigated the regulatory and functional interplay of Syndecan-1 and heparanase employing siRNA-mediated silencing and plasmid-based overexpression approaches in the human colon cancer cell line Caco2. Heparanase expression and activity were upregulated in Syndecan-1 depleted cells. This increase was linked to an upregulation of the transcription factor Egr1, which regulates heparanase at the promoter level. Inhibitor experiments demonstrated an impact of focal adhesion kinase, Wnt and ROCK-dependent signaling on this process. siRNA-depletion of Syndecan-1, and upregulation of heparanase increased the colon cancer stem cell phenotype based on sphere formation assays and phenotypic marker analysis (Side-population, NANOG, KLF4, NOTCH, Wnt, and TCF4 expression). Syndecan-1 depletion increased invasiveness of Caco2 cells in vitro in a heparanase-dependent manner. Finally, upregulated expression of heparanase resulted in increased resistance to radiotherapy, whereas high expression of enzymatically inactive heparanase promoted chemoresistance to paclitaxel and cisplatin. Our findings provide a new avenue to target a stemness-associated signaling axis as a therapeutic strategy to reduce metastatic spread and cancer recurrence.

8.
ACS Biomater Sci Eng ; 6(6): 3649-3663, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33463182

RESUMO

Recent studies have suggested that microenvironmental stimuli play a significant role in regulating cellular proliferation and migration, as well as in modulating self-renewal and differentiation processes of mammary cells with stem cell (SCs) properties. Recent advances in micro/nanotechnology and biomaterial synthesis/engineering currently enable the fabrication of innovative tissue culture platforms suitable for maintenance and differentiation of SCs in vitro. Here, we report the design and fabrication of an open microfluidic device (OMD) integrating removable poly(ε-caprolactone) (PCL) based electrospun scaffolds, and we demonstrate that the OMD allows investigation of the behavior of human cells during in vitro culture in real time. Electrospun scaffolds with modified surface topography and chemistry can influence attachment, proliferation, and differentiation of mammary SCs and epigenetic mechanisms that maintain luminal cell identity as a function of specific morphological or biochemical cues imparted by tailor-made fiber post-treatments. Meanwhile, the OMD architecture allows control of cell seeding and culture conditions to collect more accurate and informative in vitro assays. In perspective, integrated systems could be tailor-made to mimic specific physiological conditions of the local microenvironment and then analyze the response from screening specific drugs for more effective diagnostics, long-term prognostics, and disease intervention in personalized medicine.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Diferenciação Celular , Humanos , Microfluídica , Poliésteres
9.
Int J Mol Sci ; 19(11)2018 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-30463275

RESUMO

MicroRNAs (miRNAs) and transcription factors (TFs) play key roles in complex multifactorial diseases like multiple sclerosis (MS). Starting from the miRNomic profile previously associated with a cohort of pediatric MS (PedMS) patients, we applied a combined molecular and computational approach in order to verify published data in patients with adult-onset MS (AOMS). Six out of the 13 selected miRNAs (miR-320a, miR-125a-5p, miR-652-3p, miR-185-5p, miR-942-5p, miR-25-3p) were significantly upregulated in PedMS and AOMS patients, suggesting that they may be considered circulating biomarkers distinctive of the disease independently from age. A computational and unbiased miRNA-based screening of target genes not necessarily associated to MS was then performed in order to provide an extensive view of the genetic mechanisms underlying the disease. A comprehensive MS-specific miRNA-TF co-regulatory network was hypothesized; among others, SP1, RELA, NF-κB, TP53, AR, MYC, HDAC1, and STAT3 regulated the transcription of 61 targets. Interestingly, NF-κB and STAT3 cooperatively regulate the expression of immune response genes and control the cross-talk between inflammatory and immune cells. Further functional analysis will be performed on the identified critical hubs. Above all, in our view, this approach supports the need of multidisciplinary strategies for shedding light into the pathogenesis of MS.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/metabolismo , Esclerose Múltipla/genética , Fatores de Transcrição/metabolismo , Adulto , Idade de Início , Sequência de Bases , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Genes Reporter , Células HEK293 , Humanos , Luciferases/metabolismo , Masculino , MicroRNAs/genética , Curva ROC , Reprodutibilidade dos Testes
10.
J Cell Physiol ; 233(2): 1455-1467, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28542953

RESUMO

During embryonic development, new arteries, and veins form from preexisting vessels in response to specific angiogenic signals. Angiogenic signaling is complex since not all endothelial cells exposed to angiogenic signals respond equally. Some cells will be selected to become tip cells and acquire migration and proliferation capacity necessary for vessel growth while others, the stalk cells become trailer cells that stay connected with pre-existing vessels and act as a linkage to new forming vessels. Additionally, stalk and tip cells have the capacity to interchange their roles. Stalk and tip cellular responses are mediated in part by the interactions of components of the Delta/Notch and Vegf signaling pathways. We have identified in zebrafish, that the transmembrane protein Tmem230a is a novel regulator of angiogenesis by its capacity to regulate the number of the endothelial cells in intersegmental vessels by co-operating with the Delta/Notch signaling pathway. Modulation of Tmem230a expression by itself is sufficient to rescue improper number of endothelial cells induced by aberrant expression or inhibition of the activity of genes associated with the Dll4/Notch pathway in zebrafish. Therefore, Tmem230a may have a modulatory role in vessel-network formation and growth. As the Tmem230 sequence is conserved in human, Tmem230 may represent a promising novel target for drug discovery and for disease therapy and regenerative medicine in promoting or restricting angiogenesis.


Assuntos
Proliferação de Células , Células Endoteliais/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica , Receptores Notch/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Sequência de Bases , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Receptores Notch/genética , Transdução de Sinais , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
11.
Methods Mol Biol ; 1235: 243-62, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25388398

RESUMO

Mammospheres (MMs) are a model for culturing and maintaining mammary gland stem cells (SCs) or cancer stem cells (CSCs) ex situ. As MMs recapitulate the micro-niche of the mammary gland or a tumor, MMs are a model for studying the properties of SCs or CSCs, and for mapping, isolating, and characterizing the SC/CSC generated lineages. Cancer stem cells share with normal SCs the properties of self-renewal and the capacity to generate all cell types and organ structures of the mammary gland. Analysis of human tumor samples suggests that CSCs are heterogeneous in terms of proliferation and differentiation potential. Mammospheres from CSCs likewise display heterogeneity. This heterogeneity makes analysis of CSC generated MMs challenging. To identify the unique and diverse properties of MM derived CSCs, comparative analysis with MMs obtained from normal SCs is required. Here we present protocols for identifying and enriching cells with SC features from a cancer cell line using the LA7CSCs as a model. A comprehensive and comparative approach for identifying, isolating, and characterizing MMs from SCs and CSCs from human breast is also introduced. In addition, we describe detailed procedures for identifying, isolating, and characterizing mammary gland specific cell types, generated during MM formation.


Assuntos
Neoplasias da Mama/patologia , Glândulas Mamárias Humanas/citologia , Glândulas Mamárias Humanas/patologia , Células-Tronco Neoplásicas/citologia , Células-Tronco Neoplásicas/patologia , Animais , Técnicas de Cultura de Células/métodos , Diferenciação Celular , Linhagem Celular Tumoral , Separação Celular/métodos , Feminino , Humanos , Coloração e Rotulagem/métodos
12.
Biology (Basel) ; 2(3): 861-71, 2013 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24833050

RESUMO

MicroRNAs (miRNAs) are a class of small RNAs (18-22 nt) that post transcriptionally regulate gene expression by binding to complementary sequences on target mRNAs, resulting in translational repression or target degradation and gene silencing. As aberrant expression of miRNAs is implicated in important diseases including cancer miRNA-based therapies are under intensive investigation. We optimized strategies to stably or conditionally generate miRNA inhibitors for a continuous block of miRNA activity that allows for probing miRNA function in long-term cell culture experiments, cancer xenografts, 3D tissue models and for in vivo studies with transgenic organisms.

13.
In Silico Biol ; 10(5-6): 207-21, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22430355

RESUMO

Recent findings suggest the possibility that tumors originate from cancer cells with stem cell properties. The cancer stem cell (CSC) hypothesis provides an explanation for why existing cancer therapies often fail in eradicating highly malignant tumors and end with tumor recurrence. Although normal stem cells and CSCs both share the capacity for self-renewal and multi-lineage differentiation, suggesting that CSC may be derived from normal SCs, the cellular origin of transformation of CSCs is debatable. Research suggests that the tightly controlled balance of self-renewal and differentiation that characterizes normal stem cell function is dis-regulated in cancer. Additionally, recent evidence has linked an embryonic stem cell (ESC)-like gene signature with poorly differentiated high-grade tumors, suggesting that regulatory pathways controlling pluripotency may in part contribute to the somatic CSC phenotype. Here, we introduce expression profile bioinformatic analyses of mouse breast cells with CSC properties, mouse embryonic stem (mES) and induced pluripotent stem (iPS) cells with an emphasis on how study of pluripotent stem cells may contribute to the identification of genes and pathways that facilitate events associated with oncogenesis. Global gene expression analysis from CSCs and induced pluripotent stem cell lines represent an ideal model to study cancer initiation and progression and provide insight into the origin cancer stem cells. Additionally, insight into the genetic and epigenomic mechanisms regulating the balance between self-renewal and differentiation of somatic stem cells and cancer may help to determine whether different strategies used to generate iPSCs are potentially safe for therapeutic use.


Assuntos
Biomarcadores Tumorais/genética , Transformação Celular Neoplásica/genética , Regulação Neoplásica da Expressão Gênica , Homologia de Genes , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Animais , Biomarcadores Tumorais/metabolismo , Diferenciação Celular , Linhagem Celular Transformada , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Perfilação da Expressão Gênica , Células-Tronco Pluripotentes Induzidas/citologia , Glândulas Mamárias Animais , Camundongos , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/patologia
14.
BMC Genomics ; 10: 163, 2009 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-19379481

RESUMO

BACKGROUND: The cancer transcriptome is difficult to explore due to the heterogeneity of quantitative and qualitative changes in gene expression linked to the disease status. An increasing number of "unconventional" transcripts, such as novel isoforms, non-coding RNAs, somatic gene fusions and deletions have been associated with the tumoral state. Massively parallel sequencing techniques provide a framework for exploring the transcriptional complexity inherent to cancer with a limited laboratory and financial effort. We developed a deep sequencing and bioinformatics analysis protocol to investigate the molecular composition of a breast cancer poly(A)+ transcriptome. This method utilizes a cDNA library normalization step to diminish the representation of highly expressed transcripts and biology-oriented bioinformatic analyses to facilitate detection of rare and novel transcripts. RESULTS: We analyzed over 132,000 Roche 454 high-confidence deep sequencing reads from a primary human lobular breast cancer tissue specimen, and detected a range of unusual transcriptional events that were subsequently validated by RT-PCR in additional eight primary human breast cancer samples. We identified and validated one deletion, two novel ncRNAs (one intergenic and one intragenic), ten previously unknown or rare transcript isoforms and a novel gene fusion specific to a single primary tissue sample. We also explored the non-protein-coding portion of the breast cancer transcriptome, identifying thousands of novel non-coding transcripts and more than three hundred reads corresponding to the non-coding RNA MALAT1, which is highly expressed in many human carcinomas. CONCLUSION: Our results demonstrate that combining 454 deep sequencing with a normalization step and careful bioinformatic analysis facilitates the discovery and quantification of rare transcripts or ncRNAs, and can be used as a qualitative tool to characterize transcriptome complexity, revealing many hitherto unknown transcripts, splice isoforms, gene fusion events and ncRNAs, even at a relatively low sequence sampling.


Assuntos
Neoplasias da Mama/genética , Perfilação da Expressão Gênica , Análise de Sequência de DNA , Transcrição Gênica , Sequência de Aminoácidos , Sequência de Bases , Neoplasias da Mama/metabolismo , Proteínas de Ligação a Calmodulina/genética , Biologia Computacional , Proteínas do Citoesqueleto/genética , DNA Complementar/química , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/genética , Humanos , Dados de Sequência Molecular , Proteínas Nucleares/genética , RNA não Traduzido/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Análise de Sequência de RNA , Ubiquitina-Proteína Ligases
15.
Cytotechnology ; 58(1): 25-32, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19034680

RESUMO

The cancer stem cell hypothesis posits that tumors are derived from a single cancer-initiating cell with stem cell properties. The task of identifying and characterizing cancer-initiating cells with stem cell properties at the single cell level has proven technically difficult because of the scarcity of the cancer stem cells in the tissue of origin and the lack of specific markers for cancer stem cells. Here we show that a single LA7 cell, derived from rat mammary adenocarcinoma has: the ability to serially re-generate mammospheres in long-term non-adherent cultures, the differentiation potential to generate all the cell lineages of the mammary gland and branched duct-like structures that recapitulate morphologically and functionally the ductal-alveolar-like architecture of the mammary tree. The properties of self-renewal, extensive capacity for proliferation, multi-lineage differentiation and the tubular-like structure formation potential suggest that LA7 cells is a cancer stem model system to study the dynamics of tumor formation at the single cell level.

16.
BMC Genomics ; 9: 174, 2008 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-18416813

RESUMO

BACKGROUND: Although the overlap of transcriptional units occurs frequently in eukaryotic genomes, its evolutionary and biological significance remains largely unclear. Here we report a comparative analysis of overlaps between genes coding for well-annotated proteins in five metazoan genomes (human, mouse, zebrafish, fruit fly and worm). RESULTS: For all analyzed species the observed number of overlapping genes is always lower than expected assuming functional neutrality, suggesting that gene overlap is negatively selected. The comparison to the random distribution also shows that retained overlaps do not exhibit random features: antiparallel overlaps are significantly enriched, while overlaps lying on the same strand and those involving coding sequences are highly underrepresented. We confirm that overlap is mostly species-specific and provide evidence that it frequently originates through the acquisition of terminal, non-coding exons. Finally, we show that overlapping genes tend to be significantly co-expressed in a breast cancer cDNA library obtained by 454 deep sequencing, and that different overlap types display different patterns of reciprocal expression. CONCLUSION: Our data suggest that overlap between protein-coding genes is selected against in Metazoa. However, when retained it may be used as a species-specific mechanism for the reciprocal regulation of neighboring genes. The tendency of overlaps to involve non-coding regions of the genes leads to the speculation that the advantages achieved by an overlapping arrangement may be optimized by evolving regulatory non-coding transcripts.


Assuntos
Evolução Molecular , Homologia de Genes/genética , Filogenia , Animais , Neoplasias da Mama/genética , Caenorhabditis elegans/genética , Sequência Conservada/genética , Drosophila melanogaster/genética , Biblioteca Gênica , Humanos , Camundongos , Modelos Genéticos , Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...