Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Evol ; 11(12): 7492-7506, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34188829

RESUMO

Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.

2.
Curr Biol ; 28(21): 3450-3457.e13, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30344115

RESUMO

Diverse traits often covary between species [1-3]. The possibility that a single mutation could contribute to the evolution of several characters between species [3] is rarely investigated as relatively few cases are dissected at the nucleotide level. Drosophila santomea has evolved additional sex comb sensory teeth on its legs and has lost two sensory bristles on its genitalia. We present evidence that a single nucleotide substitution in an enhancer of the scute gene contributes to both changes. The mutation alters a binding site for the Hox protein Abdominal-B in the developing genitalia, leading to bristle loss, and for another factor in the developing leg, leading to bristle gain. Our study suggests that morphological evolution between species can occur through a single nucleotide change affecting several sexually dimorphic traits. VIDEO ABSTRACT.


Assuntos
Evolução Biológica , Proteínas de Drosophila/genética , Drosophila/anatomia & histologia , Drosophila/genética , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Animais , Sítios de Ligação , Proteínas de Drosophila/metabolismo , Evolução Molecular , Genitália Masculina/anatomia & histologia , Proteínas de Homeodomínio/metabolismo , Masculino , Mutação , Nucleotídeos/genética
3.
PLoS Genet ; 12(9): e1006278, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27588814

RESUMO

Patterning of C. elegans vulval cell fates relies on inductive signaling. In this induction event, a single cell, the gonadal anchor cell, secretes LIN-3/EGF and induces three out of six competent precursor cells to acquire a vulval fate. We previously showed that this developmental system is robust to a four-fold variation in lin-3/EGF genetic dose. Here using single-molecule FISH, we find that the mean level of expression of lin-3 in the anchor cell is remarkably conserved. No change in lin-3 expression level could be detected among C. elegans wild isolates and only a low level of change-less than 30%-in the Caenorhabditis genus and in Oscheius tipulae. In C. elegans, lin-3 expression in the anchor cell is known to require three transcription factor binding sites, specifically two E-boxes and a nuclear-hormone-receptor (NHR) binding site. Mutation of any of these three elements in C. elegans results in a dramatic decrease in lin-3 expression. Yet only a single E-box is found in the Drosophilae supergroup of Caenorhabditis species, including C. angaria, while the NHR-binding site likely only evolved at the base of the Elegans group. We find that a transgene from C. angaria bearing a single E-box is sufficient for normal expression in C. elegans. Even a short 58 bp cis-regulatory fragment from C. angaria with this single E-box is able to replace the three transcription factor binding sites at the endogenous C. elegans lin-3 locus, resulting in the wild-type expression level. Thus, regulatory evolution occurring in cis within a 58 bp lin-3 fragment, results in a strict requirement for the NHR binding site and a second E-box in C. elegans. This single-cell, single-molecule, quantitative and functional evo-devo study demonstrates that conserved expression levels can hide extensive change in cis-regulatory site requirements and highlights the evolution of new cis-regulatory elements required for cell-specific gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Elementos E-Box/genética , Fator de Crescimento Epidérmico/genética , Vulva/crescimento & desenvolvimento , Animais , Padronização Corporal/genética , Caenorhabditis elegans/crescimento & desenvolvimento , Diferenciação Celular/genética , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Ligação Proteica/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Análise de Célula Única , Vulva/citologia
4.
G3 (Bethesda) ; 5(12): 2893-901, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511499

RESUMO

Rapid evolution of genitalia shape, a widespread phenomenon in animals with internal fertilization, offers the opportunity to dissect the genetic architecture of morphological evolution linked to sexual selection and speciation. Most quantitative trait loci (QTL) mapping studies of genitalia divergence have focused on Drosophila melanogaster and its three most closely related species, D. simulans, D. mauritiana, and D. sechellia, and have suggested that the genetic basis of genitalia evolution involves many loci. We report the first genetic study of male genitalia evolution between D. yakuba and D. santomea, two species of the D. melanogaster species subgroup. We focus on male ventral branches, which harm females during interspecific copulation. Using landmark-based geometric morphometrics, we characterized shape variation in parental species, F1 hybrids, and backcross progeny and show that the main axis of shape variation within the backcross population matches the interspecific variation between parental species. For genotyping, we developed a new molecular method to perform multiplexed shotgun genotyping (MSG), which allowed us to prepare genomic DNA libraries from 365 backcross individuals in a few days using little DNA. We detected only three QTL, one of which spans 2.7 Mb and exhibits a highly significant effect on shape variation that can be linked to the harmfulness of the ventral branches. We conclude that the genetic architecture of genitalia morphology divergence may not always be as complex as suggested by previous studies.


Assuntos
Drosophila/anatomia & histologia , Drosophila/genética , Estudos de Associação Genética , Genitália/anatomia & histologia , Fenótipo , Locos de Características Quantitativas , Isolamento Reprodutivo , Animais , Evolução Biológica , Mapeamento Cromossômico , Cromossomos de Insetos , Cruzamentos Genéticos , Drosophila/embriologia , Feminino , Marcadores Genéticos , Genitália/embriologia , Genótipo , Masculino , Modelos Genéticos , Especificidade da Espécie
5.
Genetics ; 200(3): 685-96, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26170444

RESUMO

The metaphor of the "genetic program," indicating the genome as a set of instructions required to build a phenotype, has been very influential in biology despite various criticisms over the years. This metaphor, first published in 1961, is thought to have been invented independently in two different articles, one by Ernst Mayr and the other by François Jacob and Jacques Monod. Here, after a detailed analysis of what both parties meant by "genetic program," I show, using unpublished archives, the strong resemblance between the ideas of Mayr and Monod and suggest that their idea of genetic program probably shares a common origin. I explore the possibility that the two men met before 1961 and also exchanged their ideas through common friends and colleagues in the field of molecular biology. Based on unpublished correspondence of Jacob and Monod, I highlight the important events that influenced the preparation of their influential paper, which introduced the concept of the genetic program. Finally, I suggest that the genetic program metaphor may have preceded both papers and that it was probably used informally before 1961.


Assuntos
Genética/história , Metáfora , Terminologia como Assunto , Genoma , História do Século XX , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...