Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NMR Biomed ; : e5130, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491754

RESUMO

Chemical exchange saturation transfer (CEST) MRI is a molecular imaging tool that provides physiological information about tissues, making it an invaluable tool for disease diagnosis and guided treatment. Its clinical application requires the acquisition of high-resolution images capable of accurately identifying subtle regional changes in vivo, while simultaneously maintaining a high level of spectral resolution. However, the acquisition of such high-resolution images is time consuming, presenting a challenge for practical implementation in clinical settings. Among several techniques that have been explored to reduce the acquisition time in MRI, deep-learning-based super-resolution (DLSR) is a promising approach to address this problem due to its adaptability to any acquisition sequence and hardware. However, its translation to CEST MRI has been hindered by the lack of the large CEST datasets required for network development. Thus, we aim to develop a DLSR method, named DLSR-CEST, to reduce the acquisition time for CEST MRI by reconstructing high-resolution images from fast low-resolution acquisitions. This is achieved by first pretraining the DLSR-CEST on human brain T1w and T2w images to initialize the weights of the network and then training the network on very small human and mouse brain CEST datasets to fine-tune the weights. Using the trained DLSR-CEST network, the reconstructed CEST source images exhibited improved spatial resolution in both peak signal-to-noise ratio and structural similarity index measure metrics at all downsampling factors (2-8). Moreover, amide CEST and relayed nuclear Overhauser effect maps extrapolated from the DLSR-CEST source images exhibited high spatial resolution and low normalized root mean square error, indicating a negligible loss in Z-spectrum information. Therefore, our DLSR-CEST demonstrated a robust reconstruction of high-resolution CEST source images from fast low-resolution acquisitions, thereby improving the spatial resolution and preserving most Z-spectrum information.

2.
Magn Reson Med ; 92(1): 57-68, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38308151

RESUMO

PURPOSE: To investigate the effect of inhaled oxygen level on dynamic glucose enhanced (DGE) MRI in mouse brain tissue and CSF at 3 T. METHODS: DGE data of brain tissue and CSF from mice under normoxia or hyperoxia were acquired in independent and interleaved experiments using on-resonance variable delay multi-pulse (onVDMP) MRI. A bolus of 0.15 mL filtered 50% D-glucose was injected through the tail vein over 1 min during DGE acquisition. MRS was acquired before and after DGE experiments to confirm the presence of D-glucose. RESULTS: A significantly higher DGE effect under normoxia than under hyperoxia was observed in brain tissue (p = 0.0001 and p = 0.0002 for independent and interleaved experiments, respectively), but not in CSF (p > 0.3). This difference is attributed to the increased baseline MR tissue signal under hyperoxia induced by a shortened T1 and an increased BOLD effect. When switching from hyperoxia to normoxia without glucose injection, a signal change of ˜3.0% was found in brain tissue and a signal change of ˜1.5% was found in CSF. CONCLUSIONS: DGE signal was significantly lower under hyperoxia than that under normoxia in brain tissue, but not in CSF. The reason is that DGE effect size of brain tissue is affected by the baseline signal, which could be influenced by T1 change and BOLD effect. Therefore, DGE experiments in which the oxygenation level is changed from baseline need to be interpreted carefully.


Assuntos
Encéfalo , Glucose , Hiperóxia , Imageamento por Ressonância Magnética , Oxigênio , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Glucose/metabolismo , Oxigênio/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Hiperóxia/diagnóstico por imagem , Administração por Inalação , Masculino , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...