Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Genet ; 94(3-4): 303-312, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29851065

RESUMO

A novel autosomal recessive disorder characterized by pre- and postnatal growth restriction with microcephaly, distinctive craniofacial features, congenital alopecia, hypoplastic kidneys with renal insufficiency, global developmental delay, severe congenital sensorineural hearing loss, early mortality, hydrocephalus, and genital hypoplasia was observed in 4 children from 3 families of New Mexican Hispanic heritage. Three of the children died before 3 years of age from uremia and/or sepsis. Exome sequencing of the surviving individual identified a homozygous c.587T>C (p.Ile196Thr) mutation in ZPR1 Zinc Finger (ZPR1) that segregated appropriately in her family. In a second family, the identical variant was shown to be heterozygous in the affected individual's parents and not homozygous in any of her unaffected siblings. ZPR1 is a ubiquitously expressed, highly conserved protein postulated to transmit proliferative signals from the cell membrane to the nucleus. Structural modeling reveals that p.Ile196Thr disrupts the hydrophobic core of ZPR1. Patient fibroblast cells showed no detectable levels of ZPR1 and the cells showed a defect in cell cycle progression where a significant number of cells remained arrested in the G1 phase. We provide genetic and molecular evidence that a homozygous missense mutation in ZPR1 is associated with a rare and recognizable multisystem syndrome.


Assuntos
Anormalidades Múltiplas/genética , Alopecia/genética , Fácies , Transtornos do Crescimento/genética , Rim/anormalidades , Proteínas de Membrana Transportadoras/genética , Microcefalia/genética , Mutação , Pré-Escolar , Feminino , Genes Recessivos , Humanos , Masculino
2.
Genet Mol Res ; 7(3): 910-24, 2008 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-18949709

RESUMO

A procedure to recruit members to enlarge protein family databases is described here. The procedure makes use of UniRef50 clusters produced by UniProt. Current family entries are used to recruit additional members based on the UniRef50 clusters to which they belong. Only those additional UniRef50 members that are not fragments and whose length is within a restricted range relative to the original entry are recruited. The enriched dataset is then limited to contain only genomes from selected clades. We used the COG database - used for genome annotation and for studies of phylogenetics and gene evolution - as a model. To validate the method, a UniRef-Enriched COG0151 (UECOG) was tested with distinct procedures to compare recruited members with the recruiters: PSI-BLAST, secondary structure overlap (SOV), Seed Linkage, COGnitor, shared domain content, and neighbor-joining single-linkage, and observed that the former four agree in their validations. Presently, the UniRef50-based recruitment procedure enriches the COG database for Archaea, Bacteria and its subgroups Actinobacteria, Firmicutes, Proteobacteria, and other bacteria by 2.2-, 8.0-, 7.0-, 8.8-, 8.7-, and 4.2-fold, respectively, in terms of sequences, and also considerably increased the number of species.


Assuntos
Biologia Computacional/métodos , Bases de Dados de Proteínas , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...