Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Blood ; 143(3): 279-289, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-37738655

RESUMO

ABSTRACT: TCRαß/CD19 cell depletion is a promising graft manipulation technique frequently used in the context of human leukocyte antigen (HLA)-haploidentical hematopoietic stem cell transplantation (HSCT). We previously reported the results of a phase I-II clinical trial (NCT01810120) to assess the safety and the efficacy of this type of exvivo T-cell depletion in 80 children with acute leukemia, showing promising survival outcomes. We now report an updated analysis on a cohort of 213 children with a longer follow-up (median, 47.6 months for surviving patients). With a 5-year cumulative incidence of nonrelapse mortality of 5.2% (95% confidence interval [CI], 2.8%-8.8%) and a cumulative incidence of relapse of 22.7% (95% CI, 16.9%-29.2%), projected 10-year overall and disease-free survival (DFS) were 75.4% (95% CI, 68.6%-80.9%) and 71.6% (95% CI, 64.4%-77.6%), respectively. Cumulative incidence of both grade II-IV acute and chronic graft-versus-host disease were low (14.7% and 8.1%, respectively). In a multivariable analysis for DFS including type of disease, use of total body irradiation in the conditioning regimen (hazard ratio [HR], 0.5; 95% CI, 0.26-0.98; P = .04), disease status at HSCT (complete remission [CR] ≥3 vs CR 1/2; HR, 2.23; 95% CI, 1.20-4.16; P = .01), and high levels of pre-HSCT minimal residual disease (HR, 2.09; 95% CI, 1.01-4.33; P = .04) were independently associated with outcome. In summary, besides confirming the good outcome results already reported (which are almost superimposable on those of transplant from HLA-matched donors), this clinical update allows the identification of patients at higher risk of treatment failure for whom personalized approaches, aimed at reducing the risk of relapse, are warranted.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Criança , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta , Transplante Haploidêntico/efeitos adversos , Antígenos HLA , Transplante de Células-Tronco Hematopoéticas/métodos , Antígenos de Histocompatibilidade Classe II , Recidiva , Condicionamento Pré-Transplante/métodos , Estudos Retrospectivos
2.
Front Immunol ; 14: 1111419, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36865545

RESUMO

Natural killer (NK) cell-based adoptive immunotherapy in leukemia patients is an emerging field of interest based on clinical evidence of efficacy and safety. Elderly acute myeloid leukemia (AML) patients have been successfully treated with NK cells from HLA-haploidentical donors, especially when high amounts of alloreactive NK cells were infused. The aim of this study was comparing two approaches to define the size of alloreactive NK cells in haploidentical donors for AML patients recruited in two clinical trials with the acronym "NK-AML" (NCT03955848), and "MRD-NK". The standard methodology was based on the frequency of NK cell clones capable of lysing the related patient-derived cells. The alternative approach consisted of the phenotypic identification of freshly derived NK cells expressing, as inhibitory receptors, only the inhibitory KIR(s) specific for the mismatched KIR-Ligand(s) (HLA-C1, HLA-C2, HLA-Bw4). However, in KIR2DS2+ donors and HLA-C1+ patients, the unavailability of reagents staining only the inhibitory counterpart (KIR2DL2/L3) may lead to an underestimated identification of the alloreactive NK cell subset. Conversely, in the case of HLA-C1 mismatch, the alloreactive NK cell subset could be overestimated due to the ability of KIR2DL2/L3 to recognize with low-affinity also HLA-C2. Especially in this context, the additional exclusion of LIR1-expressing cells might be relevant to refine the size of the alloreactive NK cell subset. We could also associate degranulation assays, using as effector cells IL-2 activated donor peripheral blood mononuclear cells (PBMC) or NK cells upon co-culture with the related patient target cells. The donor alloreactive NK cell subset always displayed the highest functional activity, confirming its identification accuracy by flow cytometry. Despite the phenotypic limitations and considering the proposed corrective actions, a good correlation was shown by the comparison of the two investigated approaches. In addition, the characterization of receptor expression on a fraction of NK cell clones revealed expected but also few unexpected patterns. Thus, in most instances, the quantification of phenotypically defined alloreactive NK cells from PBMC can provide data similar to the analysis of lytic clones, with several advantages, such as a shorter time to achieve the results and, perhaps, higher reproducibility/feasibility in many laboratories.


Assuntos
Seleção do Doador , Leucemia Mieloide Aguda , Idoso , Humanos , Leucócitos Mononucleares , Imunoterapia Adotiva , Reprodutibilidade dos Testes , Leucemia Mieloide Aguda/terapia , Células Matadoras Naturais , Células Clonais
3.
HLA ; 100(2): 119-132, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35439359

RESUMO

The phenotypic identification of different NK cell subsets allows more in-depth characterization of KIR repertoire and function, which are of potential interest in KIR and disease association studies. KIR genes are highly polymorphic, but a great homology exists among the various sequences and few monoclonal antibodies (mAbs) specifically recognize a single KIR. This is the case of HP-DM1 which was demonstrated by analysis of cell transfectants and epitope mapping to be exclusively KIR2DL1-specific, covering all allotypes identified to date, except for KIR2DL1*022 and *020, and also to react with KIR2DS1*013. Here, we compared in immunofluorescence analyses the staining of HP-DM1 with other available mAbs to precisely identify KIR2DL1+ NK cells in potential donors for αßT/B-depleted haplo-HSCT, with known KIR genotype. HP-DM1 mAb was used in combination with EB6 or 11PB6 (anti-KIR2DL1/S1 and anti-KIR2DL3*005), 143211 (anti-KIR2DL1/S5), and HP-MA4 (anti-KIR2DL1/S1/S3/S5) mAbs, allowing the accurate identification of different KIR+ NK cell subsets. These phenotypic evaluations appeared useful to dissect the expression pattern of various KIR2D in NK cells from KIR2DL3*005+ individuals, particularly if KIR2DS1 is present. HP-DM1 mAb remarkably refined NK cell phenotyping of donors carrying KIR2DS5, either in the centromeric or telomeric region. Functional assays with KIR2DL1+ /S1+ /S5+ NK cells confirmed that only HP-DM1 exclusively reacts with KIR2DL1. Finally, we demonstrated that HP-DM1 mAb blocked KIR2DL1 recognition of C2+ HLA-C. Altogether, the data support that HP-DM1 is a unique reagent valuable for characterizing KIR+ NK cell subsets.


Assuntos
Anticorpos Monoclonais , Antígenos HLA-C , Alelos , Anticorpos Monoclonais/metabolismo , Genes MHC Classe I , Humanos , Células Matadoras Naturais , Receptores KIR , Receptores KIR2DL1/genética
4.
HLA ; 100(2): 107-118, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35411634

RESUMO

Killer immunoglobulin-like receptor (KIR) genes code for a family of inhibitory and activating receptors, finely tuning NK cell function. Numerous studies reported the relevance of KIR allelic polymorphism on KIR expression, ligand affinity, and strength in signal transduction. Although KIR variability, including gene copy number and allelic polymorphism, in combination with HLA class I polymorphism, impacts both KIR expression and NK cell education, only a precise phenotypic analysis can define the size of the different KIRpos NK cell subsets. In this context, reagents recognizing a limited number of KIRs is essential. In this study, we have characterized the specificity of an anti-KIR mAb termed HP-DM1. Testing its binding to HEK-293T cells transfected with plasmids coding for different KIRs, we demonstrated that HP-DM1 mAb exclusively reacts with KIR2DL1. Using site-directed mutagenesis, we identified the four amino acids relevant for HP-DM1 recognition: M44, S67, R68, and T70. HP-DM1 mAb binds to a conformational epitope including M44, the residue crucial for HLA-C K80 recognition by KIR2DL1. Based on the HP-DM1 epitope characterization, we could extend its reactivity to all KIR2DL1 allotypes identified except for KIR2DL1*022 and, most likely, KIR2DL1*020, predicting that it does not recognize any other KIR with the only exception of KIR2DS1*013. Moreover, by identifying the residues relevant for HP-DM1 binding, continuously updating of its reactivity will be facilitated.


Assuntos
Anticorpos Monoclonais , Receptores KIR , Alelos , Epitopos , Antígenos HLA-C/genética , Humanos , Células Matadoras Naturais , Receptores KIR2DL1/genética
6.
Cancer Immunol Res ; 10(3): 291-302, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35078821

RESUMO

Natural killer (NK) cells represent a promising cell type in antitumor immunotherapy for efficacy and safety, particularly in the treatment of hematologic malignancies. NK cells have been shown to exert antileukemia activity in the context of haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Products have been developed to boost the activation of NK cells only when cross-linked by tumor cells, avoiding any off-target effect. Here, we tested the in vitro effect of different NK-cell engagers (NKCE), which trigger either NKp46 or NKp30 together with CD16A, and target either CD19 or CD20 to induce killing of pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL). Target cells were NALM-16 and MHH-CALL-4 cell lines and four primary leukemias, while effector cells were resting NK cells derived from healthy donors and pediatric patients with leukemia after αßT/B-depleted haplo-HSCT. The NK cell-resistant MHH-CALL-4 was efficiently killed using all NKCEs. Boosting of NK activity against MHH-CALL-4 was also evident by degranulation and IFNγ production. Because of the lack of CD20 and high expression of CD19 on primary BCP-ALL, we focused on NKCEs targeting CD19. NKp46- and NKp30-based NKCEs displayed similar potency at inducing NK-cell activity, even when challenged with primary BCP-ALL blasts. Their efficacy was shown also using NK cells derived from transplanted patients. NKCE-induced activation against BCP-ALL can override HLA-specific inhibitory interactions, although the strongest response was observed by the alloreactive NK-cell subset. These data support the therapeutic use of NKp46/CD16A/CD19-NKCE to fight refractory/relapsed leukemia in pretransplantation or posttransplantation settings.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia-Linfoma Linfoblástico de Células Precursoras , Antígenos CD19/metabolismo , Criança , Humanos , Imunoterapia , Células Matadoras Naturais , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia
7.
Blood Adv ; 6(1): 281-292, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34592755

RESUMO

Several nonmalignant disorders (NMDs), either inherited or acquired, can be cured by allogeneic hematopoietic stem cell transplantation (HSCT). Between January 2012 and April 2020, 70 consecutive children affected by primary immunodeficiencies, inherited/acquired bone marrow failure syndromes, red blood cell disorders, or metabolic diseases, lacking a fully matched donor or requiring urgent transplantation underwent TCRαß/CD19-depleted haploidentical HSCT from an HLA-partially matched relative as part of a prospective study. The median age at transplant was 3.5 years (range 0.3-16.1); the median time from diagnosis to transplant was 10.5 months (2.7 for SCID patients). Primary engraftment was obtained in 51 patients, while 19 and 2 patients experienced either primary or secondary graft failure (GF), the overall incidence of this complication being 30.4%. Most GFs were observed in children with disease at risk for this complication (eg, aplastic anemia, thalassemia). All but 5 patients experiencing GF were successfully retransplanted. Six patients died of infectious complications (4 had active/recent infections at the time of HSCT), the cumulative incidence of transplant-related mortality (TRM) being 8.5%. Cumulative incidence of grade 1-2 acute GVHD was 14.4% (no patient developed grade 3-4 acute GVHD). Only one patient at risk developed mild chronic GVHD. With a median follow-up of 3.5 years, the 5-year probability of overall and disease-free survival was 91.4% and 86.8%, respectively. In conclusion, TCRαß/CD19-depleted haploidentical HSCT from an HLA-partially matched relative is confirmed to be an effective treatment of children with NMDs. Prompt donor availability, low incidence of GVHD, and TRM make this strategy an attractive option in NMDs patients. The study is registered at ClinicalTrial.gov as NCT01810120.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Adolescente , Criança , Pré-Escolar , Doença Enxerto-Hospedeiro/etiologia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Humanos , Lactente , Estudos Prospectivos , Receptores de Antígenos de Linfócitos T alfa-beta , Condicionamento Pré-Transplante , Resultado do Tratamento
8.
Front Immunol ; 12: 778103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917091

RESUMO

The endoplasmic reticulum aminopeptidase ERAP1 regulates innate and adaptive immune responses by trimming peptides for presentation by major histocompatibility complex (MHC) class I molecules. Previously, we have shown that genetic or pharmacological inhibition of ERAP1 on murine and human tumor cell lines perturbs the engagement of NK cell inhibitory receptors Ly49C/I and Killer-cell Immunoglobulin-like receptors (KIRs), respectively, by their specific ligands (MHC class I molecules), thus leading to NK cell killing. However, the effect of ERAP1 inhibition in tumor cells was highly variable, suggesting that its efficacy may depend on several factors, including MHC class I typing. To identify MHC class I alleles and KIRs that are more sensitive to ERAP1 depletion, we stably silenced ERAP1 expression in human HLA class I-negative B lymphoblastoid cell line 721.221 (referred to as 221) transfected with a panel of KIR ligands (i.e. HLA-B*51:01, -Cw3, -Cw4 and -Cw7), or HLA-A2 which does not bind any KIR, and tested their ability to induce NK cell degranulation and cytotoxicity. No change in HLA class I surface expression was detected in all 221 transfectant cells after ERAP1 depletion. In contrast, CD107a expression levels were significantly increased on NK cells stimulated with 221-B*51:01 cells lacking ERAP1, particularly in the KIR3DL1-positive NK cell subset. Consistently, genetic or pharmacological inhibition of ERAP1 impaired the recognition of HLA-B*51:01 by the YTS NK cell overexpressing KIR3DL1*001, suggesting that ERAP1 inhibition renders HLA-B*51:01 molecules less eligible for binding to KIR3DL1. Overall, these results identify HLA-B*51:01/KIR3DL1 as one of the most susceptible combinations for ERAP1 inhibition, suggesting that individuals carrying HLA-B*51:01-like antigens may be candidates for immunotherapy based on pharmacological inhibition of ERAP1.


Assuntos
Aminopeptidases/metabolismo , Antígeno HLA-B51/metabolismo , Células Matadoras Naturais/enzimologia , Antígenos de Histocompatibilidade Menor/metabolismo , Neoplasias/enzimologia , Receptores KIR3DL1/metabolismo , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/genética , Antineoplásicos/farmacologia , Degranulação Celular , Linhagem Celular , Técnicas de Cocultura , Citotoxicidade Imunológica , Inibidores Enzimáticos/farmacologia , Antígeno HLA-B51/genética , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Antígenos de Histocompatibilidade Menor/genética , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/imunologia , Receptores KIR3DL1/genética , Transdução de Sinais
9.
Front Cell Dev Biol ; 9: 673446, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34368126

RESUMO

The Jurkat E6.1 clone has been extensively used as a powerful tool for the genetic and biochemical dissection of the TCR signaling pathway. More recently, these cells have been exploited in imaging studies to identify key players in immunological synapse (IS) assembly in superantigen-specific conjugates and to track the dynamics of signaling molecules on glass surfaces coated with activating anti-CD3 antibodies. By comparison, Jurkat cells have been used only scantily for imaging on supported lipid bilayers (SLBs) incorporating laterally mobile TCR and integrin ligands, which allow to study synaptic rearrangements of surface molecules and the fine architecture of the mature IS, likely due to limitations in the assembly of immune synapses with well-defined architecture. Here we have explored whether upregulating the low levels of endogenous LFA-1 expression on Jurkat E6.1 cells through transduction with CD11a- and CD18-encoding lentiviruses can improve IS architecture. We show that, while forced LFA-1 expression did not affect TCR recruitment to the IS, E6.1 LFA-1 high cells assembled better structured synapses, with a tighter distribution of signaling-competent TCRs at the center of the IS. LFA-1 upregulation enhanced protein phosphotyrosine signaling on SLBs but not at the IS formed in conjugates with SEE-pulsed APCs, and led to the constitutive formation of an intracellular phosphotyrosine pool co-localizing with endosomal CD3ζ. This was paralleled by an increase in the levels of p-ZAP-70 and p-Erk both under basal conditions and following activation, and in enhanced Ca2+ mobilization from intracellular stores. The enhancement in early signaling E6.1 LFA-1 high cells did not affect expression of the early activation marker CD69 but led to an increase in IL-2 expression. Our results highlight a new role for LFA-1 in the core architecture of the IS that can be exploited to study the spatiotemporal redistribution of surface receptors on SLBs, thereby extending the potential of E6.1 cells and their derivatives for fine-scale imaging studies.

10.
Eur J Immunol ; 51(7): 1566-1579, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33899224

RESUMO

NK cells are cytotoxic components of innate lymphoid cells (ILC) that provide a first line of defense against viral infections and contribute to control tumor growth and metastasis. Their function is finely regulated by an array of HLA-specific and non-HLA-specific inhibitory and activating receptors which allow to discriminate between healthy and altered cells. Human NK cells gained a major attention in recent years because of the important progresses in understanding their biology and of some promising data in tumor therapy. In this review, we will outline well-established issues of human NK cells and discuss some of the open questions, debates, and recent advances regarding their origin, differentiation, and tissue distribution. Newly defined NK cell specializations, including the impact of inhibitory checkpoints on their function, their crosstalk with other cell types, and the remarkable adaptive features acquired in response to certain virus infections will also be discussed.


Assuntos
Células Matadoras Naturais/imunologia , Animais , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Imunidade Inata/imunologia , Neoplasias/imunologia , Viroses/imunologia
11.
Mol Aspects Med ; 80: 100870, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32800530

RESUMO

Cells of the innate immunity play an important role in tumor immunotherapy. Thus, NK cells can control tumor growth and metastatic spread. Thanks to their strong cytolytic activity against tumors, different approaches have been developed for exploiting/harnessing their function in patients with leukemia or solid tumors. Pioneering trials were based on the adoptive transfer of autologous NK cell-enriched cell populations that were expanded in vitro and co-infused with IL-2. Although relevant results were obtained in patients with advanced melanoma, the effect was mostly limited to certain metastatic localizations, particularly to the lung. In addition, the severe IL-2-related toxicity and the preferential IL-2-induced expansion of Treg limited this type of approach. This limitation may be overcome by the use of IL-15, particularly of modified IL-15 molecules to improve its half-life and optimize the biological effects. Other approaches to harness NK cell function include stimulation via TLR, the use of bi- and tri-specific NK cell engagers (BiKE and TriKE) linking activating NK receptors (e.g. CD16) to tumor-associated antigens and even incorporating an IL-15 moiety (TriKE). As recently shown, in tumor patients, NK cells may also express inhibitory checkpoints, primarily PD-1. Accordingly, the therapeutic use of checkpoint inhibitors may unleash NK cells against PD-L1+ tumors. This effect may be predominant and crucial in tumors that have lost HLA cl-I expression, thus resulting "invisible" to T lymphocytes. Additional approaches in which NK cells may represent an important tool for cancer therapy, are to exploit the unique properties of the "adaptive" NK cells. These CD57+ NKG2C+ cells, despite their mature stage and a potent cytolytic activity, maintain a strong proliferating capacity. This property revealed to be crucial in hematopoietic stem cell transplantation (HSCT), particularly in the haplo-HSCT setting, to cure high-risk leukemias. T depleted haplo-HSCT (e.g. from one of the parents) allowed to save the life of thousands of patients lacking a HLA-compatible donor. In this setting, NK cells have been shown to play an essential role against leukemia cells and infections. Another major advance is represented by chimeric antigen receptor (CAR)-engineered NK cells. CAR-NK, different from CAR-T cells, may be obtained from allogeneic donors since they do not cause GvHD. Accordingly, they may represent "off-the-shelf" products to promptly treat tumor patients, with affordable costs. Different from NK cells, helper ILC (ILC1, ILC2 and ILC3), the innate counterpart of T helper cell subsets, remain rather ambiguous with respect to their anti-tumor activity. A possible exception is represented by a subset of ILC3: their frequency in peri-tumoral tissues in patients with NSCLC directly correlates with a better prognosis, possibly reflecting their ability to contribute to the organization of tertiary lymphoid structures, an important site of T cell-mediated anti-tumor responses. It is conceivable that innate immunity may significantly contribute to the major advances that immunotherapy has ensured and will continue to ensure to the cure of cancer.


Assuntos
Leucemia , Neoplasias , Humanos , Imunidade Inata , Imunoterapia , Células Matadoras Naturais , Neoplasias/terapia
12.
Front Immunol ; 11: 2156, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33013909

RESUMO

The highly destructive mechanisms by which the immune system faces microbial infections is under the control of a series of inhibitory receptors. While most of these receptors prevent unwanted/excessive responses of individual effector cells, others play a more general role in immunity, acting as true inhibitory checkpoints controlling both innate and adaptive immunity. Regarding human NK cells, their function is finely regulated by HLA-class I-specific inhibitory receptors which allow discrimination between HLA-I+, healthy cells and tumor or virus-infected cells displaying loss or substantial alterations of HLA-I molecules, including allelic losses that are sensed by KIRs. A number of non-HLA-specific receptors have been identified which recognize cell surface or extracellular matrix ligands and may contribute to the physiologic control of immune responses and tolerance. Among these receptors, Siglec 7 (p75/AIRM-1), LAIR-1 and IRp60, recognize ligands including sialic acids, extracellular matrix/collagen or aminophospholipids, respectively. These ligands may be expressed at the surface of tumor cells, thus inhibiting NK cell function. Expression of the PD-1 checkpoint by NK cells requires particular cytokines (IL-15, IL-12, IL-18) together with cortisol, a combination that may occur in the microenvironment of different tumors. Blocking of single or combinations of inhibitory receptors unleashes NK cells and restore their anti-tumor activity, with obvious implications for tumor immunotherapy.


Assuntos
Proteínas de Checkpoint Imunológico/metabolismo , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Neoplasias/terapia , Antígenos de Diferenciação Mielomonocítica/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Células Matadoras Naturais/transplante , Lectinas/metabolismo , Neoplasias/imunologia , Receptores KIR/metabolismo , Evasão Tumoral , Microambiente Tumoral
13.
Cancers (Basel) ; 12(8)2020 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-32764469

RESUMO

NK cells can exert remarkable graft-versus-leukemia (GvL) effect in HLA-haploidentical hematopoietic stem cell transplantation (haplo-HSCT). Here, we dissected the NK-cell repertoire of 80 pediatric acute leukemia patients previously reported to have an excellent clinical outcome after αßT/B-depleted haplo-HSCT. This graft manipulation strategy allows the co-infusion of mature immune cells, mainly NK and γδT cells, and hematopoietic stem cells (HSCs). To promote NK-cell based antileukemia activity, 36/80 patients were transplanted with an NK alloreactive donor, defined according to the KIR/KIR-Ligand mismatch in the graft-versus-host direction. The analysis of the reconstituted NK-cell repertoire in these patients showed relatively high proportions of mature and functional KIR+NKG2A-CD57+ NK cells, including the alloreactive NK cell subset, one month after HSCT. Thus, the NK cells adoptively transfused with the graft persist as a mature source of effector cells while new NK cells differentiate from the donor HSCs. Notably, the alloreactive NK cell subset was endowed with the highest anti-leukemia activity and its size in the reconstituted repertoire could be influenced by human cytomegalovirus (HCMV) reactivation. While the phenotypic pattern of donor NK cells did not impact on post-transplant HCMV reactivation, in the recipients, HCMV infection/reactivation fostered a more differentiated NK-cell phenotype. In this cohort, no significant correlation between differentiated NK cells and relapse-free survival was observed.

14.
Blood Adv ; 4(10): 2297-2307, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32453840

RESUMO

Natural killer (NK) cells represent innate effector cells potentially able to play a role during the immune response against multiple myeloma (MM). To better define the distribution and the specific properties of NK cell subsets during MM disease, we analyzed their features in the bone marrow and peripheral blood of newly diagnosed MM patients. Our findings revealed that, in both compartments, NK cells were more abundant than in healthy donors. Among total MM-NK cells, a significant increase of CD94lowCD56dim NK cell subset was observed, which already appears in clinical precursor conditions leading to MM, namely monoclonal gammopathy of undetermined significance and smoldering MM, and eventually accumulates with disease progression. Moreover, a consistent fraction of CD94lowCD56dim NK cells was in a proliferation phase. When analyzed for their killing abilities, they represented the main cytotoxic NK cell subset against autologous MM cells. In vitro, MM cells could rapidly induce the expansion of the CD94lowCD56dim NK cell subset, thus reminiscent of that observed in MM patients. Mechanistically, this accumulation relied on cell to cell contacts between MM and NK cells and required both activation via DNAM-1 and homophilic interaction with CD56 expressed on MM cells. Considering the growing variety of combination treatments aimed at enhancing NK cell-mediated cytotoxicity against MM, these results may also be informative for optimizing current immunotherapeutic approaches.


Assuntos
Citotoxicidade Imunológica , Mieloma Múltiplo , Medula Óssea , Humanos , Células Matadoras Naturais
15.
J Clin Med ; 8(10)2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31623224

RESUMO

Natural killer (NK) lymphocytes are an integral component of the innate immune system and represent important effector cells in cancer immunotherapy, particularly in the control of hematological malignancies. Refined knowledge of NK cellular and molecular biology has fueled the interest in NK cell-based antitumor therapies, and recent efforts have been made to exploit the high potential of these cells in clinical practice. Infusion of high numbers of mature NK cells through the novel graft manipulation based on the selective depletion of T cells and CD19+ B cells has resulted into an improved outcome in children with acute leukemia given human leucocyte antigen (HLA)-haploidentical hematopoietic transplantation. Likewise, adoptive transfer of purified third-party NK cells showed promising results in patients with myeloid malignancies. Strategies based on the use of cytokines or monoclonal antibodies able to induce and optimize NK cell activation, persistence, and expansion also represent a novel field of investigation with remarkable perspectives of favorably impacting on outcome of patients with hematological neoplasia. In addition, preliminary results suggest that engineering of mature NK cells through chimeric antigen receptor (CAR) constructs deserve further investigation, with the goal of obtaining an "off-the-shelf" NK cell bank that may serve many different recipients for granting an efficient antileukemia activity.

16.
Front Immunol ; 10: 1876, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31447858

RESUMO

High risk Neuroblastoma (NB) includes aggressive, metastatic solid tumors of childhood. The survival rate improved only modestly, despite the use of combination therapies including novel immunotherapies based on the antibody-mediated targeting of tumor-associated surface ligands. Treatment failures may be due to the lack of adequate in vitro models for studying, in a given patient, the efficacy of potential therapeutics, including those aimed to enhance anti-tumor immune responses. We here propose a 3D alginate-based hydrogel as extracellular microenvironment to evaluate the effects of the three-dimensionality on biological and immunological properties of NB cells. NB cell lines grown within the 3D alginate spheres presented spheroid morphology, optimal survival, and proliferation capabilities, and a reduced sensitivity to the cytotoxic effect of imatinib mesylate. 3D cultured NB cells were also evaluated for the constitutive and IFN-γ-induced expression of surface molecules capable of tuning the anti-tumor activity of NK cells including immune checkpoint ligands. In particular, IFN-γ induced de novo expression of high amounts of HLA-I molecules, which protected NB cells from the attack mediated by KIR/KIR-L matched NK cells. Moreover, in the 3D alginate spheres, the cytokine increased the expression of the immune checkpoint ligands PD-Ls and B7-H3 while virtually abrogating that of PVR, a ligand of DNAM-1 activating receptor, whose expression correlates with high susceptibility to NK-mediated killing. Our 3D model highlighted molecular features that more closely resemble the immunophenotypic variants occurring in vivo and not fully appreciated in classical 2D culture conditions. Thus, based on our results, 3D alginate-based hydrogels might represent a clinical-relevant cell culture platform where to test the efficacy of personalized therapeutic approaches aimed to optimize the current and innovative immune based therapies in a very systematic and reliable way.


Assuntos
Hidrogéis , Neuroblastoma , Alginatos , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mesilato de Imatinib/farmacologia , Imunofenotipagem , Células Matadoras Naturais/imunologia , Modelos Biológicos , Neuroblastoma/tratamento farmacológico , Neuroblastoma/imunologia , Neuroblastoma/patologia
17.
Cancers (Basel) ; 11(7)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336622

RESUMO

A particularly interesting marker to identify anti-tumor immune cells is the neural cell adhesion molecule (NCAM), also known as cluster of differentiation (CD)56. Namely, hematopoietic expression of CD56 seems to be confined to powerful effector immune cells. Here, we sought to elucidate its role on various killer immune cells. First, we identified the high motility NCAM-120 molecule to be the main isoform expressed by immune cells. Next, through neutralization of surface CD56, we were able to (1) demonstrate the direct involvement of CD56 in tumor cell lysis exerted by CD56-expressing killer cells, such as natural killer cells, gamma delta (γδ) T cells, and interleukin (IL)-15-cultured dendritic cells (DCs), and (2) reveal a putative crosstalk mechanism between IL-15 DCs and CD8 T cells, suggesting CD56 as a co-stimulatory molecule in their cell-to-cell contact. Moreover, by means of a proximity ligation assay, we visualized the CD56 homophilic interaction among cancer cells and between immune cells and cancer cells. Finally, by blocking the mitogen-activated protein kinase (MAPK) pathway and the phosphoinositide 3-kinase (PI3K)-Akt pathway, we showed that IL-15 stimulation directly led to CD56 upregulation. In conclusion, these results underscore the previously neglected importance of CD56 expression on immune cells, benefiting current and future immune therapeutic options.

18.
Front Immunol ; 10: 1415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31316503

RESUMO

Natural killer (NK) cells were originally defined as effector lymphocytes of innate immunity characterized by the unique ability of killing tumor and virally infected cells without any prior priming and expansion of specific clones. The "missing-self" theory, proposed by Klas Karre, the seminal discovery of the first prototypic HLA class I-specific inhibitory receptors, and, later, of the Natural Cytotoxicity Receptors (NCRs) by Alessandro Moretta, provided the bases to understand the puzzling behavior of NK cells. Actually, those discoveries proved crucial also for many of the achievements that, along the years, have contributed to the modern view of these cells. Indeed, NK cells, besides killing susceptible targets, are now known to functionally interact with different immune cells, sense pathogens using TLR, adapt their responses to the local environment, and, even, mount a sort of immunological memory. In this review, we will specifically focus on the main activating NK receptors and on their crucial role in the ever-increasing number of functions assigned to NK cells and other innate lymphoid cells (ILCs).


Assuntos
Citotoxicidade Imunológica/imunologia , Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Neoplasias/imunologia , Imunidade Adaptativa/imunologia , Comunicação Celular/imunologia , Humanos , Memória Imunológica/imunologia , Linfócitos/imunologia , Receptores de Células Matadoras Naturais/imunologia
19.
HLA ; 94(2): 100-110, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31177639

RESUMO

The Eleventh Killer Immunoglobulin-like Receptor (KIR) Workshop was held in Camogli (Genoa, Italy) in October 2018. This congress brought together 113 participants working on KIR field. Fifty-eight studies have been presented, the majority of which included unpublished data. Thus, KIR workshop, allowing the meeting of people sharing their knowledge and experience in a friendly atmosphere, still represents a special event of fruitful discussion and exchange of novel breakthrough, results, and ideas. In this report, we summarize all the scientific contributions highlighting the most recent advances in KIR field. Forty abstracts presented at the KIR Workshop are published in this issue.


Assuntos
Polimorfismo Genético , Receptores KIR/genética , Evolução Biológica , Doença/genética , Genética Populacional , Teste de Histocompatibilidade , Humanos , Ligantes , Transplante
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...