Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioorg Med Chem Lett ; 17(14): 4026-9, 2007 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-17502145

RESUMO

Herein, we pursue the hypothesis that the structure of nordihydroguaiaretic acid (NDGA) can be refined for selective potency against the insulin-like growth factor 1 receptor (IGF-1R) as a potential therapeutic target for breast cancer while diminishing its action against other cellular targets. Thus, a set of NDGA analogs (7a-7h) was prepared and examined for inhibitory potency against IGF-1R kinase and an alternative target, 15-lipoxygenase (15 LOX). The anti-cancer effects of these compounds were determined by their ability to inhibit IGF-1 mediated cell growth of MCF-7 breast cancer cells. The design of the analogs was based upon a cursory Topliss approach in which one of NDGA's aromatic rings was modified with various substituents. Structural modification of one of the two catechol rings of NDGA was found to have little effect upon the inhibitory potency against both kinase activity of the IGF-1R and IGF-1 mediated cell growth of MCF-7 cells. 15-LOX was found to be most sensitive to structural modifications of NDGA. From the limited series of NDGA analogs examined, the compound that exhibited the greatest selectivity for IGF-1 mediated growth compared to 15-LOX inhibition was a cyclic analog 7h with a framework similar to a natural product isolated from Larrea divaricata. The results for 7h are significant because while NDGA displays biological promiscuity, 7h exhibits greater specificity toward the breast cancer target IGF-1R with that added benefit of possessing a 10-fold weaker potency against 15-LOX, an enzyme which has a purported tumor suppressing role in breast cancer. With increased specificity and potency, 7h may serve as a new lead in developing novel therapeutic agents for breast cancer.


Assuntos
Inibidores de Lipoxigenase/farmacologia , Masoprocol/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Humanos , Masoprocol/análogos & derivados
2.
J Cell Biochem ; 99(3): 860-7, 2006 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16721829

RESUMO

In humans and animal models, increased intramuscular lipid (IML) stores have been implicated in insulin resistance. Malonyl-CoA plays a critical role in cellular lipid metabolism both by serving as a precursor in the synthesis of lipids and by inhibiting lipid oxidation. In muscle, Malonyl-CoA acts primarily as a negative allosteric regulator of carnitine palmitoyl transferase-1 (CPT1) activity, thereby blocking the transport of long chain fatty acyl CoAs into the mitochondria for oxidation. In muscle, increased malonyl-CoA, decreased muscle CPT1 activity, and increased IML have all been reported in obesity. In order to determine whether malonyl-CoA synthesis might be under transcriptional as well as biochemical regulation, we measured mRNA content of several key genes that contribute to the cellular metabolism of malonyl-CoA in muscle biopsies from lean to morbidly obese subjects. Employing quantitative real-time PCR, we determined that expression of mitochondrial acetyl-CoA carboxylase 2 (ACC2) was increased by 50% with obesity (P < 0.05). In both lean and obese subjects, expression of mitochondrial ACC2 was 20-fold greater than that of cytoplasmic ACC1, consistent with their hypothesized roles in synthesizing malonyl-CoA from acetyl-CoA for CPT1 regulation and lipogenesis, respectively. In addition, in both lean and obese subjects, expression of malonyl-CoA decarboxylase was approximately 40-fold greater than fatty acid synthase, consistent with degradation, rather than lipogenesis, being the primary fate of malonyl-CoA in human muscle. No other genes showed signs of increased mRNA content with obesity, suggesting that there may be selective transcriptional regulation of malonyl-CoA metabolism in human obesity.


Assuntos
Regulação Enzimológica da Expressão Gênica , Malonil Coenzima A/metabolismo , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Acetil-CoA Carboxilase/genética , Acetil-CoA Carboxilase/metabolismo , Adulto , Animais , Biópsia , Carboxiliases/genética , Carboxiliases/metabolismo , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácido Graxo Sintases/genética , Ácido Graxo Sintases/metabolismo , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Malonil Coenzima A/genética , Músculo Esquelético/enzimologia , Piruvato Carboxilase/genética , Piruvato Carboxilase/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
3.
Metabolism ; 54(5): 598-603, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15877289

RESUMO

Obesity is associated with impaired insulin-stimulated glucose disposal in the skeletal muscle, but whether this is an intrinsic or acquired factor is unknown. In many patients with type 2 diabetes mellitus (T2D) and their nondiabetic relatives, who have a genetic predisposition for diabetes, insulin resistance is maintained in cultured muscle cells. To study the association of obesity with defects in insulin action, we investigated insulin stimulation of both insulin receptor (IR) autophosphorylation and subsequent glucose transport in primary skeletal muscle cell cultures obtained from both nonobese and obese nondiabetic subjects. In these 2 groups, there was no difference in the ability of insulin to induce autophosphorylation of the IR, phosphorylation of the downstream serine kinase Akt/PKB, or stimulation of glucose transport. Moreover, there were no major differences in cultured muscle cell content of either the IR, the IR antagonist PC-1, or GLUT 1 and GLUT 4. These data therefore indicate that the insulin resistance associated with obesity is not maintained in cultured muscle cells and suggest that this insulin resistance is an acquired feature of obesity.


Assuntos
Glucose/metabolismo , Insulina/farmacologia , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Receptor de Insulina/metabolismo , Adulto , Transporte Biológico/efeitos dos fármacos , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Humanos , Resistência à Insulina , Pessoa de Meia-Idade , Músculo Esquelético/patologia , Obesidade/patologia , Obesidade/fisiopatologia , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Receptor de Insulina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
4.
Am J Physiol Endocrinol Metab ; 288(5): E1047-54, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15613682

RESUMO

Insulin resistance in polycystic ovary syndrome (PCOS) is due to a postbinding defect in signaling that persists in cultured skin fibroblasts and is associated with constitutive serine phosphorylation of the insulin receptor (IR). Cultured skeletal muscle from obese women with PCOS and age- and body mass index-matched control women (n = 10/group) was studied to determine whether signaling defects observed in this tissue in vivo were intrinsic or acquired. Basal and insulin-stimulated glucose transport and GLUT1 abundance were significantly increased in cultured myotubes from women with PCOS. Neither IR beta-subunit abundance and tyrosine autophosphorylation nor insulin receptor substrate (IRS)-1-associated phosphatidylinositol (PI) 3-kinase activity differed in the two groups. However, IRS-1 protein abundance was significantly increased in PCOS, resulting in significantly decreased PI 3-kinase activity when normalized for IRS-1. Phosphorylation of IRS-1 on Ser312, a key regulatory site, was significantly increased in PCOS, which may have contributed to this signaling defect. Insulin signaling via IRS-2 was also decreased in myotubes from women with PCOS. In summary, decreased insulin-stimulated glucose uptake in PCOS skeletal muscle in vivo is an acquired defect. Nevertheless, there are intrinsic abnormalities in glucose transport and insulin signaling in myotubes from affected women, including increased phosphorylation of IRS-1 Ser312, that may confer increased susceptibility to insulin resistance-inducing factors in the in vivo environment. These abnormalities differ from those reported in other insulin resistant states consistent with the hypothesis that PCOS is a genetically unique disorder conferring an increased risk for type 2 diabetes.


Assuntos
Glucose/metabolismo , Resistência à Insulina , Insulina/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Síndrome do Ovário Policístico/metabolismo , Receptor de Insulina/metabolismo , Adulto , Células Cultivadas , Feminino , Humanos , Transdução de Sinais/genética
5.
J Biol Chem ; 277(46): 43565-71, 2002 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-12213804

RESUMO

In type 2 diabetes mellitus, impaired insulin signaling leads to hyperglycemia and other metabolic abnormalities. TLK19780, a non-peptide small molecule, is a new member of a novel class of anti-diabetic agents that function as activators of the insulin receptor (IR) beta-subunit tyrosine kinase. In HTC-IR cells, 20 microm TLK19780 enhanced maximal insulin-stimulated IR autophosphorylation 2-fold and increased insulin sensitivity 2-3-fold. In contrast, TLK19780 did not potentiate the action of insulin-like growth factor-1, indicating the selectivity of TLK19780 toward the IR. The predominant effect of TLK19780 was to increase the number of IR that underwent autophosphorylation. Kinetic studies indicated that TLK19780 acted very rapidly, with a maximal effect observed 2 min after addition to insulin-stimulated cells. In 3T3-L1 adipocytes, 5 microm TLK19780 enhanced insulin-stimulated glucose transport, increasing both the sensitivity and maximal responsiveness to insulin. These studies indicate that at low micromolar levels small IR activator molecules can enhance insulin action in various cultured cells and suggest that this effect is mediated by increasing the number of IR that are tyrosine-phosphorylated in response to insulin. These studies suggest that these types of molecules could be developed to treat type 2 diabetes and other clinical conditions associated with insulin resistance.


Assuntos
Receptor de Insulina/metabolismo , Receptor de Insulina/fisiologia , Células 3T3 , Adipócitos/metabolismo , Animais , Transporte Biológico , Western Blotting , Células CHO , Carcinoma Hepatocelular/metabolismo , Células Cultivadas , Cricetinae , Relação Dose-Resposta a Droga , Relação Dose-Resposta à Radiação , Ensaio de Imunoadsorção Enzimática , Glucose/metabolismo , Cinética , Camundongos , Modelos Químicos , Fosforilação , Ratos , Ácidos Sulfanílicos/farmacologia , Fatores de Tempo , Tirosina/metabolismo , Ureia/análogos & derivados , Ureia/farmacologia
6.
Metabolism ; 51(4): 465-70, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11912555

RESUMO

In obese humans, insulin resistance is accompanied by elevated levels of plasma cell membrane glycoprotein (PC-1) and decreased insulin receptor (IR) tyrosine kinase activity in skeletal muscle. PC-1 overexpression inhibits IR tyrosine kinase and possibly other downstream signaling events. The rhesus monkey in captivity is susceptible to obesity with concomitant insulin resistance. In the present study we analyzed obese (n = 10, 29.4% +/- 1.2% body fat) and non-obese (n = 12, 19.4% +/- 1.9% body fat) rhesus monkeys. Glucose clearance during an euglycemic hyperinsulinemic (400 mU/m(2) body surface area/min) clamp was lower for the obese group (non-obese, 9.7 +/- 0.9; obese, 3.2 +/- 0.7 mg/kg fat-free mass [FFM]/min; P <.01). We performed vastus lateralis muscle biopsies prior to and during the clamp. We measured PC-1 levels in these muscle samples to determine whether PC-1 content is elevated in this primate model of insulin resistance. PC-1 levels were determined by assay of phosphodiesterase activity and specific PC-1 enzyme-linked immunosorbent assay (ELISA). In the obese group, both PC-1 content and activity were 2-fold higher than in the non-obese group (P <.05). In order to investigate the ability of insulin to stimulate IR signaling in vivo in these 2 groups of monkeys, we then measured tyrosine autophosphorylation of the IR by specific ELISA. The increase in IR autophosphorylation in the non-obese group was twice that of the obese group (fold increase over basal: non-obese, 3.7 +/- 0.3; obese, 1.9 +/- 0.6; P <.05). We conclude that insulin resistance secondary to obesity in rhesus monkeys is associated with increased levels of PC-1 and decreased IR signaling capacity in skeletal muscle.


Assuntos
Resistência à Insulina/fisiologia , Glicoproteínas de Membrana/sangue , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Diester Fosfórico Hidrolases , Pirofosfatases , Receptor de Insulina/metabolismo , Tecido Adiposo/anatomia & histologia , Envelhecimento , Animais , Glicemia/metabolismo , Peso Corporal , Jejum , Técnica Clamp de Glucose , Insulina/sangue , Macaca mulatta , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Proteínas Tirosina Fosfatases/metabolismo , Valores de Referência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...