Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 8: 381, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32596237

RESUMO

High mitochondrial DNA (mtDNA) copy numbers are essential for oogenesis and embryogenesis and correlate with fertility of oocytes and viability of embryos. To understand the pathology and mechanisms associated with low mtDNA copy numbers, we knocked down mitochondrial transcription factor A (tfam), a regulator of mtDNA replication, during early zebrafish development. Reduction of tfam using a splice-modifying morpholino (MO) resulted in a 42 ± 17% decrease in mtDNA copy number in embryos at 4 days post fertilization. Morphant embryos displayed abnormal development of the eye, brain, heart, and muscle, as well as a 50 ± 22% decrease in ATP production. Transcriptome analysis revealed a decrease in protein-encoding transcripts from the heavy strand of the mtDNA, and down-regulation of genes involved in haem production and the metabolism of metabolites, which appear to trigger increased rRNA and tRNA synthesis in the nucleoli. However, this stress or compensatory response appears to fall short as pathology emerges and expression of genes related to eye development are severely down-regulated. Taken together, this study highlights the importance of sufficient mtDNA copies for early zebrafish development. Zebrafish is an excellent model to manipulate the mtDNA bottleneck and study its effect on embryogenesis rapidly and in large numbers of offspring.

2.
Genes Dev ; 16(19): 2530-43, 2002 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-12368264

RESUMO

c-Myc promotes cell growth and transformation by ill-defined mechanisms. c-myc(-/-) mice die by embryonic day 10.5 (E10.5) with defects in growth and in cardiac and neural development. Here we report that the lethality of c-myc(-/-) embryos is also associated with profound defects in vasculogenesis and primitive erythropoiesis. Furthermore, c-myc(-/-) embryonic stem (ES) and yolk sac cells are compromised in their differentiative and growth potential. These defects are intrinsic to c-Myc, and are in part associated with a requirement for c-Myc for the expression of vascular endothelial growth factor (VEGF), as VEGF can partially rescue these defects. However, c-Myc is also required for the proper expression of other angiogenic factors in ES and yolk sac cells, including angiopoietin-2, and the angiogenic inhibitors thrombospondin-1 and angiopoietin-1. Finally, c-myc(-/-) ES cells are dramatically impaired in their ability to form tumors in immune-compromised mice, and the small tumors that sometimes develop are poorly vascularized. Therefore, c-Myc function is also necessary for the angiogenic switch that is indispensable for the progression and metastasis of tumors. These findings support the model wherein c-Myc promotes cell growth and transformation, as well as vascular and hematopoietic development, by functioning as a master regulator of angiogenic factors.


Assuntos
Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas c-myc/fisiologia , Angiopoietina-1 , Angiopoietina-2 , Animais , Diferenciação Celular , Linhagem Celular , Fatores de Crescimento Endotelial/biossíntese , Eritropoese/fisiologia , Feminino , Peptídeos e Proteínas de Sinalização Intercelular/biossíntese , Linfocinas/biossíntese , Masculino , Glicoproteínas de Membrana/biossíntese , Camundongos , Camundongos Knockout , Camundongos SCID , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/genética , Células-Tronco/citologia , Células-Tronco/metabolismo , Trombospondina 1/biossíntese , Fator A de Crescimento do Endotélio Vascular , Fatores de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...