Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Exp Bot ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38795335

RESUMO

The phenology of temperate perennials, including the timing of vegetative growth and flowering, is well known to be controlled by seasonal dormancy cycles. Dormant structures are known as buds and have specialised covering structures, symplastic isolation from the plant and often autonomous stores of carbon and nitrogen reserves. In contrast, in annual plants our current understanding of the control of the timing of flowering focuses on the mechanisms affecting floral initiation, the transition from a vegetative apical meristem to a inflorescence meristem producing flower primordia in place of leaves. Recently we revealed that annual crops in Brassicaceae exhibit chilling-responsive growth control in a manner closely resembling bud dormancy breakage in perennial species. Here I discuss evidence that vernalisation in autumn is widespread and discuss its role in inducing flower bud set prior to winter, and review evidence that flower bud dormancy has a more wide-spread role in annual plant flowering time control than previously appreciated.

2.
Trends Plant Sci ; 28(10): 1098-1100, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37574427

RESUMO

In 1998, Bill Gray and colleagues showed that warm temperatures trigger arabidopsis hypocotyl elongation in an auxin-dependent manner. This laid the foundation for a vibrant research discipline. With several active members of the 'thermomorphogenesis' community, we here reflect on 25 years of elevated ambient temperature research and look to the future.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Arabidopsis/genética , Arabidopsis/metabolismo , Temperatura , Hipocótilo/metabolismo , Ácidos Indolacéticos
3.
Nat Commun ; 14(1): 2220, 2023 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-37072400

RESUMO

Mother plants play an important role in the control of dormancy and dispersal characters of their progeny. In Arabidopsis seed dormancy is imposed by the embryo-surrounding tissues of the endosperm and seed coat. Here we show that VERNALIZATION5/VIN3-LIKE 3 (VEL3) maintains maternal control over progeny seed dormancy by establishing an epigenetic state in the central cell that primes the depth of primary seed dormancy later established during seed maturation. VEL3 colocalises with MSI1 in the nucleolus and associates with a histone deacetylase complex. Furthermore, VEL3 preferentially associates with pericentromeric chromatin and is required for deacetylation and H3K27me3 deposition established in the central cell. The epigenetic state established by maternal VEL3 is retained in mature seeds, and controls seed dormancy in part through repression of programmed cell death-associated gene ORE1. Our data demonstrates a mechanism by which maternal control of progeny seed physiology persists post-shedding, maintaining parental control of seed behaviour.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Germinação/genética , Histona Desacetilases/genética , Dormência de Plantas/genética , Sementes/genética , Fatores de Transcrição/genética
4.
Proc Natl Acad Sci U S A ; 119(39): e2204355119, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36122201

RESUMO

Winter annual life history is conferred by the requirement for vernalization to promote the floral transition and control the timing of flowering. Here we show using winter oilseed rape that flowering time is controlled by inflorescence bud dormancy in addition to vernalization. Winter warming treatments given to plants in the laboratory and field increase flower bud abscisic acid levels and delay flowering in spring. We show that the promotive effect of chilling reproductive tissues on flowering time is associated with the activity of two FLC genes specifically silenced in response to winter temperatures in developing inflorescences, coupled with activation of a BRANCHED1-dependent bud dormancy transcriptional module. We show that adequate winter chilling is required for normal inflorescence development and high yields in addition to the control of flowering time. Because warming during winter flower development is associated with yield losses at the landscape scale, our work suggests that bud dormancy activation may be important for effects of climate change on winter arable crop yields.


Assuntos
Brassica napus , Produtos Agrícolas , Flores , Estações do Ano , Ácido Abscísico/metabolismo , Brassica napus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Flores/fisiologia , Regulação da Expressão Gênica de Plantas
5.
Annu Rev Plant Biol ; 73: 355-378, 2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35138879

RESUMO

Seed dormancy-the absence of seed germination under favorable germination conditions-is a plant trait that evolved to enhance seedling survival by avoiding germination under unsuitable environmental conditions. In Arabidopsis, dormancy levels are influenced by the seed coat composition, while the endosperm is essential to repress seed germination of dormant seeds upon their imbibition. Recent research has shown that the mother plant modulates its progeny seed dormancy in response to seasonal temperature changes by changing specific aspects of seed coat and endosperm development. This process involves genomic imprinting by means of epigenetic marks deposited in the seed progeny and regulators previously known to regulate flowering time. This review discusses and summarizes these discoveries and provides an update on our present understanding of the role of DOG1 and abscisic acid, two key contributors to dormancy.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/genética , Dormência de Plantas/genética , Sementes/genética
6.
J Exp Bot ; 2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34409451

RESUMO

Responses to prolonged winter chilling are universal in temperate plants which use seasonal temperature cues in the seed, vegetative and reproductive phases to align development with the earth's orbit. Climate change is driving a decline in reliable winter chill and affecting the sub-tropical extent of cultivation for temperate over-wintering crops. Here we explore molecular aspects of plant responses to winter chill including seasonal bud break and flowering, and how variation in the intensity of winter chilling or de-vernalisation can lead to effects on post-chilling plant development, including that of structures necessary for crop yields.

7.
New Phytol ; 232(3): 1311-1322, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34314512

RESUMO

Temperature variation during seed set is an important modulator of seed dormancy and impacts the performance of crop seeds through effects on establishment rate. It remains unclear how changing temperature during maturation leads to dormancy and growth vigour differences in nondormant seedlings. Here we take advantage of the large seed size in Brassica oleracea to analyse effects of temperature on individual seed tissues. We show that warm temperature during seed maturation promotes seed germination, while removal of the endosperm from imbibed seeds abolishes temperature-driven effects on germination. We demonstrate that cool temperatures during early seed maturation lead to abscisic acid (ABA) retention specifically in the endosperm at desiccation. During this time temperature affects ABA dynamics in individual seed tissues and regulates ABA catabolism. We also show that warm-matured seeds preinduce a subset of germination-related programmes in the endosperm, whereas cold-matured seeds continue to store maturation-associated transcripts including DOG1 because of effects on mRNA degradation before quiescence, rather than because of the effect of temperature on transcription. We propose that effects of temperature on seed vigour are explained by endospermic ABA breakdown and the divergent relationships between temperature and mRNA breakdown and between temperature, seed moisture and the glass transition.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Endosperma/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação , Dormência de Plantas/genética , RNA Mensageiro/genética , Sementes/metabolismo , Temperatura
8.
Entomol Exp Appl ; 168(5): 360-370, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32742005

RESUMO

The cabbage stem flea beetle (CSFB), Psylliodes chrysocephala L. (Coleoptera: Chrysomelidae), is a major pest of oilseed rape, Brassica napus L. (Brassicaceae), within the UK and continental Europe. Following the withdrawal of many broad-spectrum pesticides, most importantly neonicotinoids, and with increased incidence of pyrethroid resistance, few chemical control options remain, resulting in the need for alternative pest management strategies. We identified the parasitoid wasp Microctonus brassicae (Haeselbarth) (Hymenoptera: Braconidae) within CSFB collected from three independent sites in Norfolk, UK. Parasitism of adult CSFB was confirmed, and wasp oviposition behaviour was described. Moreover, we show that within captive colonies parasitism rates are sufficient to generate significant biological control of CSFB populations. A sequence of the M. brassicae mitochondrial cytochrome oxidase 1 (MT-CO1) gene was generated for rapid future identification. Moroccan specimens of Microctonus aethiopoides (Loan), possessing 90% sequence similarity, were the closest identified sequenced species. This study represents the first description published in English of this parasitoid of the adult cabbage stem flea beetle.

9.
New Phytol ; 228(2): 778-793, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32533857

RESUMO

Efficient seed germination and establishment are important traits for field and glasshouse crops. Large-scale germination experiments are laborious and prone to observer errors, leading to the necessity for automated methods. We experimented with five crop species, including tomato, pepper, Brassica, barley, and maize, and concluded an approach for large-scale germination scoring. Here, we present the SeedGerm system, which combines cost-effective hardware and open-source software for seed germination experiments, automated seed imaging, and machine-learning based phenotypic analysis. The software can process multiple image series simultaneously and produce reliable analysis of germination- and establishment-related traits, in both comma-separated values (CSV) and processed images (PNG) formats. In this article, we describe the hardware and software design in detail. We also demonstrate that SeedGerm could match specialists' scoring of radicle emergence. Germination curves were produced based on seed-level germination timing and rates rather than a fitted curve. In particular, by scoring germination across a diverse panel of Brassica napus varieties, SeedGerm implicates a gene important in abscisic acid (ABA) signalling in seeds. We compared SeedGerm with existing methods and concluded that it could have wide utilities in large-scale seed phenotyping and testing, for both research and routine seed technology applications.


Assuntos
Brassica napus , Germinação , Ácido Abscísico , Análise Custo-Benefício , Aprendizado de Máquina , Sementes/genética
10.
New Phytol ; 225(5): 2035-2047, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31359436

RESUMO

Seedling emergence timing is crucial in competitive plant communities and so contributes to species fitness. To understand the mechanistic basis of variation in seedling emergence timing, we exploited the contrasting behaviour of two Arabidopsis thaliana ecotypes: Cape Verde Islands (Cvi) and Burren (Bur-0). We used RNA-Seq analysis of RNA from exhumed seeds and quantitative trait loci (QTL) analyses on a mapping population from crossing the Cvi and Bur-0 ecotypes. We determined genome-wide expression patterns over an annual dormancy cycle in both ecotypes, identifying nine major clusters based on the seasonal timing of gene expression, and variation in behaviour between them. QTL were identified for depth of seed dormancy and seedling emergence timing (SET). Both analyses showed a key role for DOG1 in determining depth of dormancy, but did not support a direct role for DOG1 in generating altered seasonal patterns of seedling emergence. The principle QTL determining SET (SET1: dormancy cycling) is physically close on chromosome 5, but is distinct from DOG1. We show that SET1 and two other SET QTLs each contain a candidate gene (AHG1, ANAC060, PDF1 respectively) closely associated with DOG1 and abscisic acid signalling and suggest a model for the control of SET in the field.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dormência de Plantas , Sementes/fisiologia , Arabidopsis/genética , Arabidopsis/fisiologia , Proteínas de Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Germinação , Plântula/genética , Plântula/fisiologia , Fatores de Transcrição
11.
Curr Biol ; 29(24): 4300-4306.e2, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31813609

RESUMO

Plants with winter annual life history germinate in summer or autumn and require a period of prolonged winter cold to initiate flowering, known as vernalization. In the Brassicaceae, the requirement for vernalization is conferred by high expression of orthologs of the FLOWERING LOCUS C (FLC) gene, the expression of which is known to be silenced by prolonged exposure to winter-like temperatures [1]. Based on a wealth of vernalization experiments, typically carried out in the range of 5°C-10°C, we would expect field environments during winter to induce flowering in crops with winter annual life history. Here, we show that, in the case of winter oilseed rape, expression of multiple FLC orthologs declines not during winter but predominantly during October when the average air temperature is 10°C-15°C. We further demonstrate that plants proceed through the floral transition in early November and overwinter as inflorescence meristems, which complete floral development in spring. To validate the importance of pre-winter temperatures in flowering time control, we artificially simulated climate warming in field trial plots in October. We found that increasing the temperature by 5°C in October results in raised FLC expression and delays the floral transition by 3 weeks but only has a mild effect on flowering date the following spring. Our work shows that winter annuals overwinter as a floral bud in a manner that resembles perennials and highlights the importance of studying signaling events in the field for understanding how plants transition to flowering under real environmental conditions.


Assuntos
Brassica napus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Temperatura , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brassica/crescimento & desenvolvimento , Brassica napus/genética , Temperatura Baixa , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Meristema/metabolismo , Proteínas de Plantas/metabolismo , Estações do Ano
12.
New Phytol ; 224(1): 55-70, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31074008

RESUMO

Pleiotropy occurs when one gene influences more than one trait, contributing to genetic correlations among traits. Consequently, it is considered a constraint on the evolution of adaptive phenotypes because of potential antagonistic selection on correlated traits, or, alternatively, preservation of functional trait combinations. Such evolutionary constraints may be mitigated by the evolution of different functions of pleiotropic genes in their regulation of different traits. Arabidopsis thaliana flowering-time genes, and the pathways in which they operate, are among the most thoroughly studied regarding molecular functions, phenotypic effects, and adaptive significance. Many of them show strong pleiotropic effects. Here, we review examples of pleiotropy of flowering-time genes and highlight those that also influence seed germination. Some genes appear to operate in the same genetic pathways when regulating both traits, whereas others show diversity of function in their regulation, either interacting with the same genetic partners but in different ways or potentially interacting with different partners. We discuss how functional diversification of pleiotropic genes in the regulation of different traits across the life cycle may mitigate evolutionary constraints of pleiotropy, permitting traits to respond more independently to environmental cues, and how it may even contribute to the evolutionary divergence of gene function across taxa.


Assuntos
Evolução Biológica , Flores/crescimento & desenvolvimento , Flores/genética , Regulação da Expressão Gênica de Plantas , Pleiotropia Genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Variação Genética
13.
Sci Rep ; 9(1): 6953, 2019 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-31061437

RESUMO

Yield stability is a major problem in oilseed rape with inter-annual variation accounting for between 30-50% of the crop value among the major global rapeseed producers. The United Kingdom has persistent problems with yield instability, but the underlying causes remain unclear. We tested whether temperature plays a role in UK winter oilseed rape (WOSR) yield variation through analysis of aggregated country-wide on-farm yield data and in annual Recommended List variety trial data run by the UK Agriculture and Horticulture Development Board (AHDB). Our analyses of the two independent datasets both show that mean temperature in early winter is strongly and uniquely linked to variation in WOSR yield, with a rise in mean temperature of 1 °C associated with an average reduction of 113 (+-21) kg ha-1 in yield. We propose that understanding the mechanism by which early winter chilling affects WOSR yield will enable the breeding of varieties with a more stable and resilient yield in Western Europe as climatic variation increases.


Assuntos
Agricultura , Brassica napus/crescimento & desenvolvimento , Produtos Agrícolas/crescimento & desenvolvimento , Estações do Ano , Temperatura , Sementes , Reino Unido
14.
Nat Plants ; 5(2): 148-152, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30718925

RESUMO

Plants modulate their growth rate according to seasonal and environmental cues using a suite of growth repressors known to interact directly with cellular machinery controlling cell division and growth. Mutants lacking growth repressors show increased growth rates1,2, but the mechanism by which these plants ensure source availability for faster growth is unclear. Here, we undertake a comprehensive analysis of the fast-growth phenotype of a quintuple growth-repressor mutant, using a combination of theoretical and experimental approaches to understand the physiological basis of source-sink coordination. Our results show that, in addition to the control of tissue growth rates, growth repressors also affect tissue composition and leaf thickness, modulating the efficiency of production of new photosynthetic capacity. Modelling suggests that increases in growth efficiency underlie growth-rate differences between the wild type and spatula della growth-repressor mutant, with spatula della requiring less carbon to synthesize a comparable photosynthetic capability to the wild type, and fixing more carbon per unit mass. We conclude that through control of leaf development, growth repressors regulate both source availability and sink strength to achieve growth-rate variation without risking a carbon deficit.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Carbono/metabolismo , Germinação , Mutação , Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Raízes de Plantas/metabolismo
15.
Plant J ; 98(2): 277-290, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30570804

RESUMO

Seed dormancy is a widespread and key adaptive trait that is essential for the establishment of soil seed banks and prevention of pre-harvest sprouting. Herein we demonstrate that the endosperm-expressed transcription factors ZHOUPI (ZOU) and INDUCER OF CBF EXPRESSION1 (ICE1) play a role in determining the depth of primary dormancy in Arabidopsis. We show that ice1 or zou increases seed dormancy and the double mutant has an additive phenotype. This increased dormancy is associated with increased ABA levels, and can be separated genetically from any role in endosperm maturation because loss of ABA biosynthesis or DELAY OF GERMINATION 1 reverses the dormancy phenotype without affecting the aberrant seed morphology. Consistent with these results, ice1 endosperms had an increased capacity for preventing embryo greening, a phenotype previously associated with an increase in endospermic ABA levels. Although ice1 changes the expression of many genes, including some in ABA biosynthesis, catabolism and/or signalling, only ABA INSENSITIVE 3 is significantly misregulated in ice1 mutants. We also demonstrate that ICE1 binds to and inhibits expression of ABA INSENSITIVE 3. Our data demonstrate that Arabidopsis ICE1 and ZOU determine the depth of primary dormancy during maturation independently of their effect on endosperm development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Endosperma/metabolismo , Dormência de Plantas/fisiologia , Plântula/metabolismo , Fatores de Transcrição/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Endosperma/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação/genética , Fenótipo , Dormência de Plantas/genética , Reguladores de Crescimento de Plantas/metabolismo , Plântula/genética , Sementes/genética , Transdução de Sinais , Fatores de Transcrição/genética
16.
Science ; 360(6392): 1014-1017, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29853684

RESUMO

Plants integrate seasonal signals, including temperature and day length, to optimize the timing of developmental transitions. Seasonal sensing requires the activity of two proteins, FLOWERING LOCUS C (FLC) and FLOWERING LOCUS T (FT), that control certain developmental transitions in plants. During reproductive development, the mother plant uses FLC and FT to modulate progeny seed dormancy in response to temperature. We found that for regulation of seed dormancy, FLC and FT function in opposite configuration to how those same genes control time to flowering. For seed dormancy, FT regulates seed dormancy through FLC gene expression and regulates chromatin state by activating antisense FLC transcription. Thus, in Arabidopsis the same genes controlled in opposite format regulate flowering time and seed dormancy in response to the temperature changes that characterize seasons.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Dormência de Plantas/genética , Sementes/genética , Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Cromatina/metabolismo , Flores/genética , Germinação/genética , Germinação/fisiologia , Proteínas de Domínio MADS/fisiologia , Dormência de Plantas/fisiologia , RNA Antissenso/metabolismo , Estações do Ano , Sementes/crescimento & desenvolvimento , Temperatura , Transcrição Gênica
17.
J Biophotonics ; 11(11): e201800108, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29770613

RESUMO

Providing sufficient, healthy food for the increasing global population is putting a great deal of pressure on the agrochemical industry to maximize crop yields without sustaining environmental damage. The growth and yield of every plant with sexual reproduction, depends on germination and emergence of sown seeds, which is affected greatly by seed disease. This can be most effectively controlled by treating seeds with pesticides before they are sown. An effective seed coating treatment requires a high surface coverage and adhesion of active ingredients onto the seed surface and the addition of adhesive agents in coating formulations plays a key role in achieving this. Although adhesive agents are known to enhance seed germination, little is understood about how they affect surface distribution of actives and how formulations can be manipulated to rationally engineer seed coating preparations with optimized coverage and efficacy. We show, for the first time, that stimulated Raman scattering microscopy can be used to map the seed surface with microscopic spatial resolution and with chemical specificity to identify formulation components distributed on the seed surface. This represents a major advance in our capability to rationally engineer seed coating formulations with enhanced efficacy.


Assuntos
Agroquímicos/química , Microscopia Óptica não Linear , Fungicidas Industriais/química
19.
Curr Biol ; 27(17): R874-R878, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28898656

RESUMO

Reproduction is a critical time in plant life history. Therefore, genes affecting seed dormancy and germination are among those under strongest selection in natural plant populations. Germination terminates seed dispersal and thus influences the location and timing of plant growth. After seed shedding, germination can be prevented by a property known as seed dormancy. In practise, seeds are rarely either dormant or non-dormant, but seeds whose dormancy-inducing pathways are activated to higher levels will germinate in an ever-narrower range of environments. Thus, measurements of dormancy must always be accompanied by analysis of environmental contexts in which phenotypes or behaviours are described. At its simplest, dormancy can be imposed by the formation of a simple physical barrier around the seed through which gas exchange and the passage of water are prevented. Seeds featuring this so-called 'physical dormancy' often require either scarification or passage through an animal gut (replete with its associated digestive enzymes) to disrupt the barrier and permit germination. In other types of seeds with 'morphological dormancy' the embryo remains under-developed at maturity and a dormant phase exists as the embryo continues its growth post-shedding, eventually breaking through the surrounding tissues. By far, the majority of seeds exhibit 'physiological dormancy' - a quiescence program initiated by either the embryo or the surrounding endosperm tissues. Physiological dormancy uses germination-inhibiting hormones to prevent germination in the absence of the specific environmental triggers that promote germination. During and after germination, early seedling growth is supported by catabolism of stored reserves of protein, oil or starch accumulated during seed maturation. These reserves support cell expansion, chloroplast development and root growth until photoauxotrophic growth can be resumed.


Assuntos
Germinação/fisiologia , Dormência de Plantas/fisiologia , Sementes/crescimento & desenvolvimento , Germinação/efeitos dos fármacos , Dormência de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Sementes/efeitos dos fármacos , Sementes/fisiologia
20.
J Exp Bot ; 68(4): 761-763, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28391331
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...