Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(30): e202405287, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38712847

RESUMO

Marangoni self-propulsion refers to motion of liquid or solid driven by a surface tension gradient, and has applications in soft robots/devices, cargo delivery, self-assembly etc. However, two problems remain to be addressed for motion control (e.g., ON-OFF) with conventional surfactants as Marangoni fuel: (1) limited motion lifetime due to saturated interfacial adsorption of surfactants; (2) in- situ motion stop is difficult once Marangoni flows are triggered. Instead of covalent surfactants, supra-amphiphiles with hydrophilic and hydrophobic parts linked noncovalently, hold promise to solve these problems owing to its dynamic and reversible surface activity responsively. Here, we propose a new concept of 'supra-amphiphile fuel and switch' based on the facile synthesis of disodium-4-azobenzene-amino-1,3-benzenedisulfonate (DABS) linked by a Schiff base, which has amphiphilicity for self-propulsion, hydrolyzes timely to avoid saturated adsorption, and provides pH-responsive control over ON-OFF motion. The self-propulsion lifetime is extended by 50-fold with DABS and motion control is achieved. The mechanism is revealed with coupled interface chemistry involving two competitive processes of interfacial adsorption and hydrolysis of DABS based on both experiments and simulation. The concept of 'supra-amphiphile fuel and switch' provides an active solution to prolong and control Marangoni self-propulsive devices for the advance of intelligent material systems.

2.
ACS Appl Mater Interfaces ; 15(19): 23980-23988, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37140932

RESUMO

Marangoni rotors are smart devices that are capable of self-propulsive motions based on the Marangoni effect, namely interfacial flows caused by a gradient of surface tension. Owing to the features of untethered motions and coupled complexity with fluid, these Marangoni devices are attractive for both theoretical study and applications in biomimicking, cargo delivery, energy conversion, etc. However, the controllability of Marangoni motions dependent on concentration gradients remains to be improved, including the motion lifetime, direction, and trajectories. The challenge lies in the flexible loading and adjustments of surfactant fuels. Herein, we design a multi-engine device in a six-arm shape with multiple fuel positions allowing for motion control and propose a strategy of diluting the surfactant fuel to prolong the motion lifetime. The resulting motion lifetime has been extended from 140 to 360 s by 143% compared with conventional surfactant fuels. The motion trajectories could be facilely adjusted by changing both the fuel number and positions, leading to diverse rotation patterns. By integrating with a coil and a magnet, we obtained a system of mini-generators based on the Marangoni rotor. Compared with the single-engine case, the output of the multi-engine rotor was increased by 2 magnitudes owing to increased kinetic energy. The design of the above Marangoni rotor has addressed the problems of concentration-gradient-driven Marangoni devices and enriched their applications in harvesting energy from the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...