Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(4): e0125118, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25905458

RESUMO

Tree diameter at breast height (dbh) and height are the most important variables used in forest inventory and management as well as forest carbon-stock estimation. In order to identify the key stand variables that influence the tree height-dbh relationship and to develop and validate a suit of models for predicting tree height, data from 5961 tree samples aged from 6 years to 53 years and collected from 80 Chinese-fir plantation plots were used to fit 39 models, including 33 nonlinear models and 6 linear models, were developed and evaluated into two groups. The results showed that composite models performed better in height estimate than one-independent-variable models. Nonlinear composite Model 34 and linear composite Model 6 were recommended for predicting tree height in Chinese fir plantations with a dbh range between 4 cm and 40 cm when the dbh data for each tree and the quadratic mean dbh of the stand (Dq) and mean height of the stand (Hm) were available. Moreover, Hm could be estimated by using the formula Hm = 11.707 × l n(Dq)-18.032. Clearly, Dq was the primary stand variable that influenced the height-dbh relationship. The parameters of the models varied according to stand age and site. The inappropriate application of provincial or regional height-dbh models for predicting small tree height at local scale may result in larger uncertainties. The method and the recommended models developed in this study were statistically reliable for applications in growth and yield estimation for even-aged Chinese-fir plantation in Huitong and Changsha. The models could be extended to other regions and to other tree species only after verification in subtropical China.


Assuntos
Cunninghamia/crescimento & desenvolvimento , Árvores/crescimento & desenvolvimento , Biomassa , Carbono/análise , China , Agricultura Florestal , Modelos Teóricos
2.
Plant Cell Environ ; 38(1): 207-23, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25158610

RESUMO

A greenhouse experiment was conducted to study whether exogenous abscisic acid (ABA) mediates the responses of poplars to excess zinc (Zn). Populus × canescens seedlings were treated with either basal or excess Zn levels and either 0 or 10 µm ABA. Excess Zn led to reduced photosynthetic rates, increased Zn accumulation, induced foliar ABA and salicylic acid (SA), decreased foliar gibberellin (GA3 ) and auxin (IAA), elevated root H2 O2 levels, and increased root ratios of glutathione (GSH) to GSSG and foliar ratios of ascorbate (ASC) to dehydroascorbate (DHA) in poplars. While exogenous ABA decreased foliar Zn concentrations with 7 d treatments, it increased levels of endogenous ABA, GA3 and SA in roots, and resulted in highly increased foliar ASC accumulation and ratios of ASC to DHA. The transcript levels of several genes involved in Zn uptake and detoxification, such as yellow stripe-like family protein 2 (YSL2) and plant cadmium resistance protein 2 (PCR2), were enhanced in poplar roots by excess Zn but repressed by exogenous ABA application. These results suggest that exogenous ABA can decrease Zn concentrations in P. × canescens under excess Zn for 7 d, likely by modulating the transcript levels of key genes involved in Zn uptake and detoxification.


Assuntos
Ácido Abscísico/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Reguladores de Crescimento de Plantas/farmacologia , Populus/fisiologia , Zinco/metabolismo , Ácido Abscísico/metabolismo , Ácido Ascórbico/metabolismo , Biodegradação Ambiental , Ácido Desidroascórbico/metabolismo , Giberelinas , Glutationa/metabolismo , Ácidos Indolacéticos/metabolismo , Estresse Oxidativo , Fotossíntese , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Populus/efeitos dos fármacos , Populus/genética , Plântula/efeitos dos fármacos , Plântula/genética , Plântula/fisiologia , Árvores
3.
Ying Yong Sheng Tai Xue Bao ; 26(11): 3467-74, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-26915204

RESUMO

Based on a new process-based model, TRIPLEX-GHG, this paper analyzed the spatio-temporal variations of natural wetland CH4 emissions over China under different future climate change scenarios. When natural wetland distributions were fixed, the amount of CH4 emissions from natural wetland ecosystem over China would increase by 32.0%, 55.3% and 90.8% by the end of 21st century under three representative concentration pathways (RCPs) scenarios, RCP2. 6, RCP4.5 and RCP8.5, respectively, compared with the current level. Southern China would have higher CH4 emissions compared to that from central and northern China. Besides, there would be relatively low emission fluxes in western China while relatively high emission fluxes in eastern China. Spatially, the areas with relatively high CH4 emission fluxes would be concentrated in the middle-lower reaches of the Yangtze River, the Northeast and the coasts of the Pearl River. In the future, most natural wetlands would emit more CH4 for RCP4.5 and RCP8.5 than that of 2005. However, under RCP2.6 scenario, the increasing trend would be curbed and CH4 emissions (especially from the Qinghai-Tibet Plateau) begin to decrease in the late 21st century.


Assuntos
Poluentes Atmosféricos/análise , Mudança Climática , Monitoramento Ambiental , Metano/análise , Áreas Alagadas , China , Análise Espaço-Temporal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...