Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale Res Lett ; 12(1): 362, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28532127

RESUMO

"Carbon-based material" has demonstrated a great potential on water purification due to its strong physical adsorption to organic pollutants in the water. Three-dimensional cubic ordered mesoporous carbon (CMK-8), one of the well-known ordered mesoporous carbons, was prepared by using nanocasting method with mesoporous silica (KIT-6) as the template. In this study, CMK-8 blended with Nafion polymer to form a free-standing mesoporous CMK-8-Nafion composite membrane. The synthesis of high crystallinity CMK-8 was characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). More than 80% methyl orange (MO) removal efficiency was observed under 254-nm UV irradiation after 120 min. Ninety-two percent recycling performance was remained after four recycling tests, which indicated a reliable servicing lifetime for the water purification. Furthermore, an additional layer of plasmonic silver nanoparticles (Ag NPs) was integrated into this CMK-8-Nafion membrane for higher pollutant removal efficiency, attributing from the generation of plasmon-resonance hot electrons from Ag NPs. A 4-in. CMK-8-Nafion composite membrane was also fabricated for the demonstration of potential large-scale utilization.

2.
ACS Appl Mater Interfaces ; 9(1): 327-334, 2017 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-27957831

RESUMO

In this study, a 4 in. CMK-8-Nafion membrane was fabricated using three-dimensional cubic ordered mesoporous carbon CMK-8 blended with a Nafion polymer. Plasmon-resonance hot electrons and holes from Au nanoparticles (NPs) combined with this CMK-8-Nafion membrane resulted in the effective decomposition of methyl orange (MO) due to the synergetic work of hot carriers with mesoporous carbon; a sample of Au/CMK-8-Nafion exposed to outdoor sunlight radiation for 150 min successfully removed 97% of MO. Fourier transform infrared spectroscopy (FTIR) was employed to examine the generation of hydroxyl groups (OH-) during decomposition. Finally, the spatial distribution of hydroxyl groups was also investigated across the different coverage densities of plasmonic Au NPs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...