Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuropharmacology ; 248: 109888, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38403262

RESUMO

Nocturnal light pollution, an underappreciated mood manipulator, disturbs the circadian rhythms of individuals in modern society. Preclinical and clinical studies have suggested that exposure to lights at night (LANs) results in depression-like phenotypes. However, the mechanism underlying the action of LANs remains unclear. Therefore, this study explored the potential influence of LANs on depression-related brain regions by testing brain-derived neurotrophic factor (BDNF), synaptic transmission, and plasticity in male Sprague-Dawley rats. Depression-related behavioral tests, enzyme-linked immunosorbent assays, and intracellular and extracellular electrophysiological recordings were performed. Resultantly, rats exposed to either white or blue LAN for 5 or 21 days exhibited depression-like behaviors. Both white and blue LANs reduced BDNF expression in the medial prefrontal cortex (mPFC) and ventrolateral periaqueductal gray (vlPAG). Moreover, both lights at night (LANs) elevated the plasma corticosterone levels. Pharmacologically, the activation of glucocorticoid receptors mimics the LAN-mediated effects on depression-like behaviors and reduces BDNF levels, whereas the inhibition of glucocorticoid receptors blocks LAN-mediated behavioral and molecular actions. Electrophysiologically, both LANs attenuated the stimulation-response curve, increased the paired-pulse ratio, and decreased the frequency and amplitude of miniature excitatory postsynaptic currents in the vlPAG. In the mPFC, LANs attenuate long-term potentiation and long-term depression. Collectively, these results suggested that white and blue LANs disturbed BDNF expression, synaptic transmission, and plasticity in the vlPAG and mPFC in a glucocorticoid-dependent manner. The results of the present study provide a theoretical basis for understanding the effects of nocturnal light exposure on depression-like phenotypes.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Glucocorticoides , Ratos , Animais , Masculino , Ratos Sprague-Dawley , Glucocorticoides/farmacologia , Glucocorticoides/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Depressão/metabolismo , Receptores de Glucocorticoides/metabolismo , Córtex Pré-Frontal
2.
Neurobiol Stress ; 28: 100600, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38187456

RESUMO

Light is an underappreciated mood manipulator. People are often exposed to electronic equipment, which results in nocturnal blue light exposure in modern society. Light pollution drastically shortens the night phase of the circadian rhythm. Preclinical and clinical studies have reported that nocturnal light exposure can influence mood, such as depressive-like phenotypes. However, the effects of blue light at night (BLAN) on other moods and how it alters mood remain unclear. Here, we explored the impact of BLAN on stress-provoked aggression in male Sprague‒Dawley rats, focusing on its influence on basolateral amygdala (BLA) activity. Resident-intruder tests, extracellular electrophysiological recordings, and enzyme-linked immunosorbent assays were performed. The results indicated that BLAN produces stress-induced heightened aggressive and anxiety-like phenotypes. Moreover, BLAN not only potentiates long-term potentiation and long-term depression in the BLA but also results in stress-induced elevation of brain-derived neurotrophic factor (BDNF), mature BDNF, and phosphorylation of tyrosine receptor kinase B expression in the BLA. Intra-BLA microinfusion of BDNF RNAi, BDNF neutralizing antibody, K252a, and rapamycin blocked stress-induced heightened aggressive behavior in BLAN rats. In addition, intra-BLA application of BDNF and 7,8-DHF caused stress-induced heightened aggressive behavior in naïve rats. Collectively, these results suggest that BLAN results in stress-evoked heightened aggressive phenotypes, which may work by enhancing BLA BDNF signaling and synaptic plasticity. This study reveals that nocturnal blue light exposure may have an impact on stress-provoked aggression. Moreover, this study provides novel insights into the BLA BDNF-dependent mechanism underlying the impact of the BLAN on mood.

3.
Anesth Analg ; 138(5): 1107-1119, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37390022

RESUMO

BACKGROUND: Paclitaxel (PTX), which is a first-line chemotherapy drug used to treat various types of cancers, exhibits peripheral neuropathy as a common side effect that is difficult to treat. Protein arginine methyltransferase 5 (PRMT 5) is a key regulator of the chemotherapy response, as chemotherapy drugs induce PRMT5 expression. However, little is known about the PRMT5-mediated epigenetic mechanisms involved in PTX-induced neuropathic allodynia. METHODS: Sprague-Dawley rats were intraperitoneally given PTX to induce neuropathic pain. Biochemical analyses were conducted to measure the protein expression levels in the dorsal root ganglion (DRG) of the animals. The von Frey test and hot plate test were used to evaluate nociceptive behaviors. RESULTS: PTX increased the PRMT5 (mean difference [MD]: 0.68, 95% confidence interval [CI], 0.88-0.48; P < .001 for vehicle)-mediated deposition of histone H3R2 dimethyl symmetric (H3R2me2s) at the transient receptor potential vanilloid 1 ( Trpv1 ) promoter in the DRG. PRMT5-induced H3R2me2s recruited WD repeat domain 5 (WDR5) to increase trimethylation of lysine 4 on histone H3 (H3K4me3) at Trpv1 promoters, thus resulting in TRPV1 transcriptional activation (MD: 0.65, 95% CI, 0.82-0.49; P < .001 for vehicle) in DRG in PTX-induced neuropathic pain. Moreover, PTX increased the activity of NADPH oxidase 4 (NOX4) (MD: 0.66, 95% CI, 0.81-0.51; P < .001 for vehicle), PRMT5-induced H3R2me2s, and WDR5-mediated H3K4me3 in the DRG in PTX-induced neuropathic pain. Pharmacological antagonism and the selective knockdown of PRMT5 in DRG neurons completely blocked PRMT5-mediated H3R2me2s, WDR5-mediated H3K4me3, or TRPV1 expression and neuropathic pain development after PTX injection. Remarkably, NOX4 inhibition not only attenuated allodynia behavior and reversed the above-mentioned signaling but also reversed NOX4 upregulation via PTX. CONCLUSIONS: Thus, the NOX4/PRMT5-associated epigenetic mechanism in DRG has a dominant function in the transcriptional activation of TRPV1 in PTX-induced neuropathic pain.


Assuntos
Antineoplásicos , Neuralgia , Ratos , Animais , Paclitaxel/toxicidade , Paclitaxel/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteína-Arginina N-Metiltransferases/farmacologia , Ratos Sprague-Dawley , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Hiperalgesia/metabolismo , Gânglios Espinais , Canais de Cátion TRPV/genética , Antineoplásicos/efeitos adversos , Neuralgia/induzido quimicamente , Neuralgia/genética , Neuralgia/metabolismo , Epigênese Genética
4.
ACS Chem Neurosci ; 14(23): 4227-4239, 2023 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-37978917

RESUMO

The neurohormone melatonin (MLT) demonstrates promising potential in ameliorating neuropathic pain induced by paclitaxel (PTX) chemotherapy. However, little is known about its protective effect on dorsal root ganglion (DRG) neurons in neuropathic pain resulting from the chemotherapeutic drug PTX. Here, PTX-treated rats revealed that intrathecal administration of MLT dose-dependently elevated hind paw withdrawal thresholds and latency, indicating that MLT significantly reversed PTX-induced neuropathic pain. Mechanistically, the analgesic effects of MLT were found to be mediated via melatonin receptor 2 (MT2), as pretreatment with an MT2 receptor antagonist inhibited these effects. Moreover, intrathecal MLT injection reversed the pNEK2-dependent epigenetic program induced by PTX. All of the effects caused by MLT were blocked by pretreatment with an MT2 receptor-selective antagonist, 4P-PDOT. Remarkably, multiple MLT administered during PTX treatment (PTX+MLTs) exhibited not only rapid but also lasting reversal of allodynia/hyperalgesia compared to single-bolus MLT administered after PTX treatment (PTX+MLT). In addition, PTX+MLTs exhibited greater efficacy in reversing PTX-induced alterations in pRSK2, pNEK2, JMJD3, H3K27me3, and TRPV1 expression and interaction in DRG neurons than PTX+MLT. These results indicated that MLT administered during PTX treatment reduced the incidence and/or severity of neuropathy and had a better inhibitory effect on the pNEK2-dependent epigenetic program compared to MLT administered after PTX treatment. In conclusion, MLT/MT2 is a promising therapy for the treatment of pNEK2-dependent painful neuropathy resulting from PTX treatment. MLT administered during PTX chemotherapy may be more effective in the prevention or reduction of PTX-induced neuropathy and maintaining quality.


Assuntos
Melatonina , Neuralgia , Ratos , Animais , Melatonina/farmacologia , Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptor MT2 de Melatonina/uso terapêutico , Gânglios Espinais/metabolismo , Neuralgia/induzido quimicamente , Neuralgia/tratamento farmacológico , Neuralgia/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Neurônios/metabolismo , Epigênese Genética
5.
Bioengineering (Basel) ; 10(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37508880

RESUMO

Although trans-vaginal mesh (TVM) offers a successful anatomical reconstruction and can subjectively relieve symptoms/signs in pelvic organ prolapse (POP) patients, its objective benefits to the voiding function of the bladder have not been well established. In this study, we investigated the therapeutic advantage of TVM on bladder function by focusing on the thermodynamic workload of voiding. The histories of 31 POP patients who underwent TVM repair were retrospectively reviewed. Cystometry and pressure volume analysis (PVA) of the patients performed before and after the operation were analyzed. TVM postoperatively decreased the mean voiding resistance (mRv, p < 0.05, N = 31), reduced the mean and peak voiding pressure (mPv, p < 0.05 and pPv, p < 0.01, both N = 31), and elevated the mean flow rate (mFv, p < 0.05, N = 31) of voiding. While displaying an insignificant effect on the voided volume (Vv, p < 0.05, N = 31), TVM significantly shortened the voiding time (Tv, p < 0.05, N = 31). TVM postoperatively decreased the loop-enclosed area (Apv, p < 0.05, N = 31) in the PVA, indicating that TVM lessened the workload of voiding. Moreover, in 21 patients who displayed postvoiding urine retention before the operation, TVM decreased the residual volume (Vr, p < 0.01, N = 21). Collectively, our results reveal that TVM postoperatively lessened the workload of bladder voiding by diminishing voiding resistance, which reduced the pressure gradient required for driving urine flow.

6.
Int J Neuropsychopharmacol ; 26(7): 483-495, 2023 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-37279653

RESUMO

BACKGROUND: BTRX-246040, a nociceptin/orphanin FQ peptide receptor antagonist, is being developed for the treatment of depressive patients. However, the underlying mechanism of this potential antidepressant is still largely unclear. Here, we studied the antidepressant-related actions of BTRX-246040 in the ventrolateral periaqueductal gray (vlPAG). METHODS: The tail suspension test, forced swim test, female urine sniffing test, sucrose preference test, and learned helplessness (LH) combined with pharmacological approaches were employed to examine the antidepressant-like effects and drug effects on LH-induced depressive-like behavior in C57BL/6J mice. Electrophysiological recordings in vlPAG neurons were used to study synaptic activity. RESULTS: Intraperitoneal administration of BTRX-246040 produced antidepressant-like behavioral effects in a dose-dependent manner. Systemic BTRX-246040 (10 mg/kg) resulted in an increased frequency and amplitude of miniature excitatory postsynaptic currents (EPSCs) in the vlPAG. Moreover, slice perfusion of BTRX-246040 directly elevated the frequency and amplitude of miniature EPSCs and enhanced the evoked EPSCs in the vlPAG, which were blocked by pretreatment with the nociceptin/orphanin FQ peptide receptor agonist Ro 64-6198. In addition, intra-vlPAG application of BTRX-246040 produced antidepressant-like behavioral effects in a dose-dependent manner. Moreover, intra-vlPAG pretreatment with 6-cyano-7-nitroquinoxaline-2,3-dione reversed both systemic and local BTRX-246040-mediated antidepressant-like behavioral effects. Furthermore, both systemic and local BTRX-246040 decreased the LH phenotype and reduced LH-induced depressive-like behavior. CONCLUSIONS: The results suggested that BTRX-246040 may act through the vlPAG to exert antidepressant-relevant actions. The present study provides new insight into a vlPAG-dependent mechanism underlying the antidepressant-like actions of BTRX-246040.


Assuntos
Neurônios , Substância Cinzenta Periaquedutal , Camundongos , Feminino , Animais , Camundongos Endogâmicos C57BL , Antidepressivos/farmacologia , Receptores de Peptídeos
7.
Thromb Res ; 225: 63-72, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37030187

RESUMO

INTRODUCTION: Paclitaxel is a microtubule-stabilizing drug used to treat several types of cancer, including ovarian and breast cancer. Because of its antiproliferative effect on vascular smooth muscle cells, balloons and stents are coated with paclitaxel for use in coronary revascularization and prevention of in-stent restenosis (ISR). However, mechanisms underlying ISR are complicated. Platelet activation is one of the major causes of ISR after percutaneous coronary intervention. Although the antiplatelet activity of paclitaxel was noted in rabbit platelets, the effect of paclitaxel on platelets remains unclear. This study investigated whether paclitaxel exhibits antiplatelet activity in human platelets. METHODS AND RESULTS: Paclitaxel inhibited platelet aggregation induced by collagen but not that induced by thrombin, arachidonic acid, or U46619, suggesting that paclitaxel is more sensitive to the inhibition of collagen-induced platelet activation. Moreover, paclitaxel blocked collagen receptor glycoprotein (GP) VI downstream signaling molecules, including Lyn, Fyn, PLCγ2, PKC, Akt, and MAPKs. However, paclitaxel did not directly bind to GPVI and cause GPVI shedding, as detected by surface plasmon resonance and flow cytometry, respectively, indicating that paclitaxel may interfere with GPVI downstream signaling molecules, such as Lyn and Fyn. Paclitaxel also prevented granule release and GPIIbIIIa activation induced by collagen and low convulxin doses. Moreover, paclitaxel attenuated pulmonary thrombosis and delayed platelet thrombus formation in mesenteric microvessels without significantly affecting hemostasis. CONCLUSION: Paclitaxel exerts antiplatelet and antithrombotic effects. Thus, paclitaxel may provide additional benefits beyond its antiproliferative effect when used in drug-coated balloons and drug-eluting stents for coronary revascularization and prevention of ISR.


Assuntos
Reestenose Coronária , Stents Farmacológicos , Intervenção Coronária Percutânea , Animais , Humanos , Coelhos , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Stents Farmacológicos/efeitos adversos , Fibrinolíticos , Reestenose Coronária/etiologia , Reestenose Coronária/terapia , Resultado do Tratamento , Stents/efeitos adversos , Intervenção Coronária Percutânea/efeitos adversos , Colágeno , Angiografia Coronária/efeitos adversos
8.
Anesthesiology ; 138(6): 634-655, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36867667

RESUMO

BACKGROUND: Nonsense-mediated messenger RNA (mRNA) decay increases targeted mRNA degradation and has been implicated in the regulation of gene expression in neurons. The authors hypothesized that nonsense-mediated µ-opioid receptor mRNA decay in the spinal cord is involved in the development of neuropathic allodynia-like behavior in rats. METHODS: Adult Sprague-Dawley rats of both sexes received spinal nerve ligation to induce neuropathic allodynia-like behavior. The mRNA and protein expression contents in the dorsal horn of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by the von Frey test and the burrow test. RESULTS: On Day 7, spinal nerve ligation significantly increased phosphorylated upstream frameshift 1 (UPF1) expression in the dorsal horn (mean ± SD; 0.34 ± 0.19 in the sham ipsilateral group vs. 0.88 ± 0.15 in the nerve ligation ipsilateral group; P < 0.001; data in arbitrary units) and drove allodynia-like behaviors in rats (10.58 ± 1.72 g in the sham ipsilateral group vs. 1.19 ± 0.31 g in the nerve ligation ipsilateral group, P < 0.001). No sex-based differences were found in either Western blotting or behavior tests in rats. Eukaryotic translation initiation factor 4A3 (eIF4A3) triggered SMG1 kinase (0.06 ± 0.02 in the sham group vs. 0.20 ± 0.08 in the nerve ligation group, P = 0.005, data in arbitrary units)-mediated UPF1 phosphorylation, leading to increased nonsense-mediated mRNA decay factor SMG7 binding and µ-opioid receptor mRNA degradation (0.87 ± 0.11-fold in the sham group vs. 0.50 ± 0.11-fold in the nerve ligation group, P = 0.002) in the dorsal horn of the spinal cord after spinal nerve ligation. Pharmacologic or genetic inhibition of this signaling pathway in vivo ameliorated allodynia-like behaviors after spinal nerve ligation. CONCLUSIONS: This study suggests that phosphorylated UPF1-dependent nonsense-mediated µ-opioid receptor mRNA decay is involved in the pathogenesis of neuropathic pain.


Assuntos
Hiperalgesia , Neuralgia , Masculino , Feminino , Ratos , Animais , Hiperalgesia/metabolismo , Ratos Sprague-Dawley , Degradação do RNAm Mediada por Códon sem Sentido , Medula Espinal/metabolismo , Nervos Espinhais , Neuralgia/metabolismo , Corno Dorsal da Medula Espinal , Receptores Opioides , Ligadura/efeitos adversos
9.
Anesth Analg ; 137(6): 1289-1301, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36753440

RESUMO

BACKGROUND: The microtubule-stabilizing drug paclitaxel (PTX) is an important chemotherapeutic agent for cancer treatment and causes peripheral neuropathy as a common side effect that substantially impacts the functional status and quality of life of patients. The mechanistic role for NIMA-related kinase 2 (NEK2) in the progression of PTX-induced neuropathic pain has not been established. METHODS: Adult male Sprague-Dawley rats intraperitoneally received PTX to induce neuropathic pain. The protein expression levels in the dorsal root ganglion (DRG) of animals were measured by biochemical analyses. Nociceptive behaviors were evaluated by von Frey tests and hot plate tests. RESULTS: PTX increased phosphorylation of the important microtubule dynamics regulator NEK2 in DRG neurons and induced profound neuropathic allodynia. PTX-activated phosphorylated NEK2 (pNEK2) increased jumonji domain-containing 3 (JMJD3) protein, a histone demethylase protein, to specifically catalyze the demethylation of the repressive histone mark H3 lysine 27 trimethylation (H3K27me3) at the Trpv1 gene, thereby enhancing transient receptor potential vanilloid subtype-1 (TRPV1) expression in DRG neurons. Moreover, the pNEK2-dependent PTX response program is regulated by enhancing p90 ribosomal S6 kinase 2 (RSK2) phosphorylation. Conversely, intrathecal injections of kaempferol (a selective RSK2 activation antagonist), NCL 00017509 (a selective NEK2 inhibitor), NEK2-targeted siRNA, GSK-J4 (a selective JMJD3 inhibitor), or capsazepine (an antagonist of TRPV1 receptor) into PTX-treated rats reversed neuropathic allodynia and restored silencing of the Trpv1 gene, suggesting the hierarchy and interaction among phosphorylated RSK2 (pRSK2), pNEK2, JMJD3, H3K27me3, and TRPV1 in the DRG neurons in PTX-induced neuropathic pain. CONCLUSIONS: pRSK2/JMJD3/H3K27me3/TRPV1 signaling in the DRG neurons plays as a key regulator for PTX therapeutic approaches.


Assuntos
Antineoplásicos , Neuralgia , Humanos , Ratos , Masculino , Animais , Paclitaxel/efeitos adversos , Paclitaxel/metabolismo , Hiperalgesia/induzido quimicamente , Hiperalgesia/genética , Ratos Sprague-Dawley , Gânglios Espinais , Fosfatos/efeitos adversos , Fosfatos/metabolismo , Histonas/metabolismo , Qualidade de Vida , Canais de Cátion TRPV , Neuralgia/induzido quimicamente , Neuralgia/genética , Neuralgia/metabolismo , Antineoplásicos/efeitos adversos , Neurônios/metabolismo , Epigênese Genética , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo
10.
Neuropharmacology ; 225: 109402, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36565854

RESUMO

(2R,6R)-Hydroxynorketamine (HNK), a ketamine metabolite, has been proposed as an ideal next-generation antidepressant due to its rapid-acting and long-lasting antidepression-relevant actions. Interestingly, recent studies have shown that (2R,6R)-HNK may have diverse impacts on memory formation. However, its effect on fear memory extinction is still unknown. In the present study, we assessed the effects of (2R,6R)-HNK on synaptic transmission and plasticity in the basolateral amygdala (BLA) and explored its actions on auditory fear memory extinction. Adult male C57BL/6J mice were used in this study. The extracellular electrophysiological recording was conducted to assay synaptic transmission and plasticity. The auditory fear conditioning paradigm was performed to test fear extinction. The results showed that (2R,6R)-HNK at 30 mg/kg increased the number of c-fos-positive cells in the BLA. Moreover, (2R,6R)-HNK enhanced the induction and maintenance of long-term potentiation (LTP) in the BLA in a dose-dependent manner (at 1, 10, and 30 mg/kg). In addition, (2R,6R)-HNK at 30 mg/kg and directly slice perfusion of (2R,6R)-HNK enhanced BLA synaptic transmission. Furthermore, intra-BLA application and systemic administration of (2R,6R)-HNK reduced the retrieval of recent fear memory and decreased the retrieval of remote fear memory. Both local and systemic (2R,6R)-HNK also inhibited the spontaneous recovery of remote fear memory. Taken together, these results indicated that (2R,6R)-HNK could regulate BLA synaptic transmission and plasticity and act through the BLA to modulate fear memory. The results revealed that (2R,6R)-HNK may be a potential drug to treat posttraumatic stress disorder (PTSD) patients.


Assuntos
Complexo Nuclear Basolateral da Amígdala , Camundongos , Animais , Masculino , Extinção Psicológica , Medo , Camundongos Endogâmicos C57BL
11.
Front Bioeng Biotechnol ; 10: 912602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36061421

RESUMO

Importance: It needs to be clarified whether trans-obturator tape (TOT)-enhanced urethral resistance could impact the voiding function. Objective: Although TOT has been well-recognized for enhancing urethral resistance to restore continence in stress urinary incontinence (SUI) patients, whether the bladder's voiding functions adapt to the TOT-enhanced resistance has not been adequately investigated. This study thereby aimed to investigate whether TOT impacts the bladder's thermodynamic efficacy during the voiding phase. Design: A retrospective analysis of urodynamics performed before and after TOT was assessed. Setting: A tertiary referral hospital in Taiwan. Participants: A total of 26 female SUI patients who underwent urodynamic investigations before and after TOT. Main outcomes and measures: The area enclosed by the pressure-volume loop (Apv), which represents the work performed by the bladder during voiding, in a pressure-volume analysis established by plotting the detrusor pressure versus intra-vesical volume was retrospectively analyzed. Paired Student's t-tests were employed to assess the difference in values before and after the operation. Significance in difference was set at p < 0.05. Results: TOT increased Apv in 20 of 26 (77%) patients and significantly increased the mean Apv compared to the preoperative control (2.17 ± 0.18 and 1.51 ± 0.13 × 103 cmH2O-ml, respectively p < 0.01). TOT also increased the mean urethral resistance (1.03 ± 0.30 vs. 0.29 ± 0.05 cmH2O-sec/ml, p < 0.01) and mean voiding pressure (25.87 ± 1.72 and 19.30 ± 1.98 cmH2O p < 0.01) but did not affect the voided volume and voiding time. Moreover, the TOT-induced Apv increment showed a moderate correlation with the changes in urethral resistance and voiding pressure (both r > 0.5) but no correlation with changes in voided volume or voiding time. It is remarkable that the TOT-induced urethral resistance increment showed a strong correlation with changes in voiding pressure (r > 0.7). Conclusion and Relevance: The bladder enhances thermodynamic efficacy by adapting the voiding mechanism to increased urethral resistance caused by TOT. Further studies with higher case series and longer follow-ups should assess whether this effect could be maintained over time or expire in a functional detrusor decompensation, to define diagnostic criteria that allow therapeutic interventions aimed at its prevention during the follow-up. Clinical Trial Registration: (clinicaltrials.gov), identifier (NCT05255289).

12.
Biomed Pharmacother ; 153: 113531, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076516

RESUMO

Platelets play a crucial role on hemostasis and are also involved in cardiovascular diseases, such as heart attack and stroke. Artesunate has been reported to possess multiple biological activities, including antitumor and anti-inflammatory activities. However, its effect on platelet activation remains unclear. Thus, we explored the detailed mechanisms underlying its antiplatelet effect. For the in vitro study, the data indicated that artesunate inhibited platelet aggregation induced by collagen, but not thrombin or U46619, indicating that artesunate may selectively inhibit collagen-mediated platelet activation Artesunate also blocked glycoprotein VI (GPVI) downstream signaling, including Syk, PLCγ2, PKC, Akt, and MAPKs. Moreover, artesunate could compete with collagen for binding to collagen receptor and bind to human recombinant GPVI with a high affinity (KD = 44 nM), indicating that it may directly interfere with GPVI. Artesunate also reduced collagen-induced granule release, calcium mobilization, and GPIIbIIIa activation. For the in vivo study, artesunate markedly prevented pulmonary thrombosis and delayed platelet thrombus formation in mesenteric veins and arteries but had minimal effects on hemostasis. In conclusion, we for the first time demonstrated that artesunate acts as a GPVI antagonist and effectively prevents platelet activation and thrombus formation with minimal risk of bleeding, highlighting its therapeutic potential in cardiovascular diseases.


Assuntos
Doenças Cardiovasculares , Trombose , Artesunato/farmacologia , Artesunato/uso terapêutico , Plaquetas , Doenças Cardiovasculares/metabolismo , Colágeno/metabolismo , Humanos , Ativação Plaquetária , Agregação Plaquetária , Trombose/tratamento farmacológico , Trombose/metabolismo , Trombose/prevenção & controle
13.
Neuropharmacology ; 210: 109028, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35304174

RESUMO

Originally characterized as an oncoprotein overexpressed in many forms of cancer that participates in numerous cellular pathways, DEK has since been well described regarding the regulation of epigenetic markers and transcription factors in neurons. However, its role in neuropathic allodynia processes remain elusive and intriguingly complex. Here, we show that DEK, which is induced in spinal dorsal horn neurons after spinal nerve ligation (SNL), is regulated by miR-489-3p. Moreover, SNL-induced decrease in miR-489-3p expression increased the expression of DEK, which recruited TET1 to the promoter fragments of the Bdnf, Grm5, and Stat3 genes, thereby enhancing their transcription in the dorsal horn. Remarkably, these effects were also induced by intrathecally administering naïve animals with miR-489-3p inhibitor, which could be inhibited by knockdown of TET1 siRNA or DEK siRNA. Conversely, delivery of intrathecal miR-489-3p-mimic into SNL rats attenuated allodynia behavior and reversed protein expression coupled to the promoter segments in the dorsal horn. Thus, a spinal miR-489-3p/DEK/TET1 transcriptional axis may contribute to neuropathic allodynia. These results may provide a new target for treating neuropathic allodynia.


Assuntos
Dioxigenases , MicroRNAs , Neuralgia , Animais , Dioxigenases/genética , Dioxigenases/metabolismo , Epigênese Genética , Hiperalgesia/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neuralgia/metabolismo , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Ratos , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/metabolismo , Nervos Espinhais/metabolismo
14.
Sci Rep ; 11(1): 19168, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580404

RESUMO

By enhancing vagal activity, auricle transcutaneous electric nerve stimulation (TENS) is developed as a non-invasive therapy for heart failure. Nevertheless, though shoulder TENS used for treating adhesive capsulitis could affect vagal tone, its potential impact on heart functions remains unclear. In this study, electrocardiogram (ECG) and heart rate (HR) of subjects in response to sham, right-sided, or left-sided shoulder TENS (TENS-S, TENS-R, and TENS-L, respectively; 5 min) were recorded and analyzed. During the stimulation period, TENS-R constantly and TENS-L transiently decreased the HR of subjects; both TENS-R and TENS-L increased powers of the low- and high-frequency spectra. While TENS-R exhibiting no effect, TENS-L increased the ratio of low/high-frequency power spectrum indicating TENS-R decreased the HR through potentiating cardiac vagal tone. Collectively, these results suggest TENS could be an early and non-invasive therapy for heart failure patients before considering implant devices or devices are not feasible; moreover, therapists/physicians need to carefully monitor the potential adverse events during treatment for patient safety.Trial registration: The study protocol was registered in ClinicalTrials.gov (NCT03982472; 11/06/2019).


Assuntos
Frequência Cardíaca/fisiologia , Ombro , Estimulação Elétrica Nervosa Transcutânea/métodos , Adulto , Eletrocardiografia , Feminino , Humanos , Masculino , Estimulação Elétrica Nervosa Transcutânea/efeitos adversos , Estimulação do Nervo Vago/métodos
15.
Antioxidants (Basel) ; 10(7)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34356327

RESUMO

Inflammation and oxidative stress are closely related processes in the pathogenesis of various ocular diseases. Uveitis is a disorder of the uvea and ocular tissues that causes extreme pain, decreases visual acuity, and can eventually lead to blindness. The pharmacological functions of fucoxanthin, isolated from brown algae, induce a variety of therapeutic effects such as oxidative stress reduction and repression of inflammation reactions. However, the specific anti-inflammatory effects of fucoxanthin on pathogen-associated molecular pattern (PAMP) lipopolysaccharide-induced uveitis have yet to be extensively described. Therefore, the aim of present study was to investigate the anti-inflammatory effects of fucoxanthin on uveitis in rats. The results showed that fucoxanthin effectively enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in ocular tissues. Furthermore, fucoxanthin significantly increased the ocular activities of superoxide dismutase and decreased the levels of malondialdehyde stimulated by PAMP-induced uveitis. Ocular hypertension and the levels of inflammatory cells and proinflammatory cytokine tumor necrosis factor-alpha in the aqueous humor were alleviated with fucoxanthin treatment. Consequently, compared to the observed effects in lipopolysaccharide groups, fucoxanthin treatment significantly preserved iris sphincter innervation and pupillary function. Additionally, PAMP-induced corneal endothelial disruption was significantly inhibited by fucoxanthin treatment. Overall, these findings suggest that fucoxanthin may protect against inflammation from PAMP-induced uveitis by promoting the Nrf2 pathway and inhibiting oxidative stress.

16.
J Cell Mol Med ; 25(19): 9434-9446, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34448532

RESUMO

Naphthalimide derivatives have multiple biological activities, including antitumour and anti-inflammatory activities. We previously synthesized several naphthalimide derivatives; of them, compound 5 was found to exert the strongest inhibitory effect on human DNA topoisomerase II activity. However, the effects of naphthalimide derivatives on platelet activation have not yet been investigated. Therefore, the mechanism underlying the antiplatelet activity of compound 5 was determined in this study. The data revealed that compound 5 (5-10 µM) inhibited collagen- and convulxin- but not thrombin- or U46619-mediated platelet aggregation, suggesting that compound 5 is more sensitive to the inhibition of glycoprotein VI (GPVI) signalling. Indeed, compound 5 could inhibit the phosphorylation of signalling molecules downstream of GPVI, followed by the inhibition of calcium mobilization, granule release and GPIIb/IIIa activation. Moreover, compound 5 prevented pulmonary embolism and prolonged the occlusion time, but tended to prolong the bleeding time, indicating that it can prevent thrombus formation but may increase bleeding risk. This study is the first to demonstrate that the naphthalimide derivative compound 5 exerts antiplatelet and antithrombotic effects. Future studies should modify compound 5 to synthesize more potent and efficient antiplatelet agents while minimizing bleeding risk, which may offer a therapeutic potential for cardiovascular diseases.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Naftalimidas/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Glicoproteínas da Membrana de Plaquetas/metabolismo , Trombose/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Cálcio/metabolismo , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Humanos , Imuno-Histoquímica , Masculino , Camundongos , Microvasos/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/patologia , Estrutura Molecular , Naftalimidas/química , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais , Trombose/tratamento farmacológico , Trombose/etiologia , Trombose/patologia
17.
Front Pharmacol ; 12: 657959, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122078

RESUMO

Aims: Pressure in the bladder, which is a high compliance organ, is only slightly elevated to a considerable filling volume during storage. Although cystometry off-line offers mean compliance, no protocol is available for real-time assays of the dynamics of bladder compliance, and the potential impact of solifenacin and mirabegron on dynamic bladder compliance has not been established. Methods: Along with constantly infused cystometry, a pressure-volume analysis (PVA) was performed by plotting intra-vesical volume against pressure in Sprague-Dawley rats. The instant compliance was assayed as the slope of the trajectory, and the mean compliance (Cm) was determined by the slope of the line produced by regression of the data points at the end of the first, second, and third quarters of the filling phase. Results: Under a steady-state, the PVA trajectory moved clockwise which shaped coincident enclosed loops with stable compliance. Though administering to naïve animals solifenacin, but not mirabegron (both 1 × 10-5-1 × 10-1 mg/kg, i.a.) decreased the peak pressure, both of these reagents exhibited acute increments in the trajectory slope and Cm of the filling phase in a dose-dependent manner (ED50 = 1.4 × 10-4 and 2.2 × 10-5 mg/kg, respectively). Resembling urine frequency/urgency in OAB patients, the voiding frequency of a capacity-reduced bladder was increased in association with decreased compliance which was ameliorated by both acute solifenacin and mirabegron injections (both 1 × 10-1 mg/kg). Conclusion: In addition to their well-known anti-inotropic/relaxative effects, solifenacin, and mirabegron induce an acute increase in bladder compliance to ameliorate OAB-like syndromes. Together with time-domain cystometry, PVA offers a platform for investigating the physiology/pathophysiology/pharmacology of bladder compliance which is crucial for urine storage.

18.
Nanomedicine ; 36: 102427, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34174418

RESUMO

Cellular senescence is the progressive impairment of function and proliferation in response to various regulators. Dihydrolipoic acid-coated gold nanoclusters (DHLA-Au NCs), which are molecular clusters with covalently linked dihydroxyl lipoic acid, preserve cellular activities for long-term incubation. DHLA-Au NC delivery was characterized, and we determined the role of growth supplements on internalization, allowing the optimization of DHLA-Au NC bioactivity. In the optimized medium, DHLA-Au NCs attenuated the levels of the senescence-associated phenotype. Molecular mechanism analysis further indicated that during DHLA-Au NC treatment, the activation of the stress signal JNK and its downstream c-Jun were impaired under LPS induction, which led to a decline in AP-1-mediated TNF-α transactivation. Confocal microscopy and subcellular fractionation analysis suggested that DHLA-Au NCs interacted with mitochondria through their lipid moiety and attenuated mitochondria-derived reactive oxygen species. With adequate treatment, DHLA-Au NCs show protection against cellular senescence and inflammation in vitro and in vivo.


Assuntos
Anti-Inflamatórios , Senescência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Ouro , MAP Quinase Quinase 4/metabolismo , Nanopartículas Metálicas , Mitocôndrias/metabolismo , Ácido Tióctico/análogos & derivados , Fator de Transcrição AP-1/metabolismo , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacocinética , Materiais Revestidos Biocompatíveis/farmacologia , Ouro/química , Ouro/farmacologia , Humanos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Ácido Tióctico/química , Ácido Tióctico/farmacocinética , Ácido Tióctico/farmacologia
19.
Mar Drugs ; 19(2)2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33670685

RESUMO

Oxidative stress is identified as a major inducer of retinal pigment epithelium (RPE) cell dysregulation and is associated with age-related macular degeneration (AMD). The protection of RPE disorders plays an essential role in the pathological progress of retinal degeneration diseases. The pharmacological functions of fucoxanthin, a characteristic carotenoid, including anti-inflammatory and antioxidant properties, may ameliorate an outstanding bioactivity against premature senescence and cellular dysfunction. This study demonstrates that fucoxanthin protects RPE cells from oxidative stress-induced premature senescence and decreased photoreceptor cell loss in a sodium iodate-induced AMD animal model. Similarly, oxidative stress induced by hydrogen peroxide, nuclear phosphorylated histone (γH2AX) deposition and premature senescence-associated ß-galactosidase staining were inhibited by fucoxanthin pretreatment in a human RPE cell line, ARPE-19 cells. Results reveal that fucoxanthin treatment significantly inhibited reactive oxygen species (ROS) generation, reduced malondialdehyde (MDA) concentrations and increased the mitochondrial metabolic rate in oxidative stress-induced RPE cell damage. Moreover, atrophy of apical microvilli was inhibited in cells treated with fucoxanthin after oxidative stress. During aging, the RPE undergoes well-characterized pathological changes, including amyloid beta (Aß) deposition, beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1) expression and tight junction disruption, which were also reduced in fucoxanthin-treated groups by immunofluorescence. Altogether, pretreatment with fucoxanthin may protect against premature senescence and cellular dysfunction in retinal cells by oxidative stress in experimental AMD animal and human RPE cell models.


Assuntos
Degeneração Macular/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Epitélio Pigmentado da Retina/efeitos dos fármacos , Xantofilas/farmacologia , Animais , Antioxidantes/farmacologia , Linhagem Celular , Senescência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Humanos , Degeneração Macular/patologia , Masculino , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Epitélio Pigmentado da Retina/citologia
20.
Neurotherapeutics ; 18(2): 1295-1315, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33415686

RESUMO

Many epigenetic regulators are involved in pain-associated spinal plasticity. Coactivator-associated arginine methyltransferase 1 (CARM1), an epigenetic regulator of histone arginine methylation, is a highly interesting target in neuroplasticity. However, its potential contribution to spinal plasticity-associated neuropathic pain development remains poorly explored. Here, we report that nerve injury decreased the expression of spinal CARM1 and induced allodynia. Moreover, decreasing spinal CARM1 expression by Fbxo3-mediated CARM1 ubiquitination promoted H3R17me2 decrement at the K+ channel promoter, thereby causing K+ channel epigenetic silencing and the development of neuropathic pain. Remarkably, in naïve rats, decreasing spinal CARM1 using CARM1 siRNA or a CARM1 inhibitor resulted in similar epigenetic signaling and allodynia. Furthermore, intrathecal administration of BC-1215 (a novel Fbxo3 inhibitor) prevented CARM1 ubiquitination to block K+ channel gene silencing and ameliorate allodynia after nerve injury. Collectively, the results reveal that this newly identified spinal Fbxo3-CARM1-K+ channel gene functional axis promotes neuropathic pain. These findings provide essential insights that will aid in the development of more efficient and specific therapies against neuropathic pain.


Assuntos
Epigênese Genética/fisiologia , Proteínas F-Box/antagonistas & inibidores , Neuralgia/terapia , Manejo da Dor/métodos , Canais de Potássio , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , Animais , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Feminino , Masculino , Neuralgia/genética , Neuralgia/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , RNA Interferente Pequeno/administração & dosagem , Ratos , Ratos Sprague-Dawley , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Corno Dorsal da Medula Espinal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...