Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Reprod Immunol ; 80(3): e12996, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29904979

RESUMO

PROBLEM: Development of platinum resistance in ovarian cancer is mediated by both cancer cells and tumor microenvironment. Activation of epithelial-mesenchymal transition program in cancer cells may lead to enrichment for resistant clones. These processes can be affected by tumor-associated macrophages, a highly plastic population of cells that participate in tumor progression and response to treatment by shaping the microenvironment. We aimed to study how platinum resistance influences the crosstalk between macrophages and ovarian cancer cells. METHOD OF STUDY: Using cisplatin-sensitive ovarian cancer cell line A2780, we developed and characterized cisplatin-resistant A2780Cis and cisplatin and doxorubicin co-resistant A2780Dox cell lines. Next, we set up an indirect coculture system with THP-1 cell line-derived M0-type-, M1-type- and M2-type-like polarized macrophages. We monitored the expression of genes associated with cellular stemness, multidrug resistance, and epithelial-mesenchymal transition in cancer cells, and expression profile of M1/M2 markers in macrophages. RESULTS: Development of drug resistance in ovarian cancer cell lines was accompanied by increased migration, clonogenicity, and upregulated expression of transcription factors, associated with cellular stemness and epithelial-mesenchymal transition. Upon coculture, we noted that the most relevant changes in gene expression profile occurred in A2780 cells. Moreover, M0- and M1-type macrophages, but not M2-type macrophages, showed significant transcriptional alterations. CONCLUSION: Our results provide the evidence for bidirectional interplay between cancer cells and macrophages. Independent of platinum resistance status, ovarian cancer cells polarize macrophages toward M2-like type, whereas macrophages induce epithelial-mesenchymal transition and stemness-related gene expression profile in cisplatin-sensitive, but not cisplatin-resistant cancer cells.


Assuntos
Adenocarcinoma/imunologia , Cisplatino/uso terapêutico , Macrófagos/imunologia , Neoplasias Ovarianas/imunologia , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Cocultura , Citocinas/metabolismo , Resistencia a Medicamentos Antineoplásicos , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Imunomodulação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/patologia , Células Th2/imunologia , Evasão Tumoral , Microambiente Tumoral
2.
Cancer Cell ; 33(4): 736-751.e5, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29606348

RESUMO

Genetic linkage analysis previously suggested that GKAP, a scaffold protein of the N-methyl-D-aspartate receptor (NMDAR), was a potential modifier of invasion in a mouse model of pancreatic neuroendocrine tumor (PanNET). Here, we establish that GKAP governs invasive growth and treatment response to NMDAR inhibitors of PanNET via its pivotal role in regulating NMDAR pathway activity. Combining genetic knockdown of GKAP and pharmacological inhibition of NMDAR, we implicate as downstream effectors FMRP and HSF1, which along with GKAP demonstrably support invasiveness of PanNET and pancreatic ductal adenocarcinoma cancer cells. Furthermore, we distilled genome-wide expression profiles orchestrated by the NMDAR-GKAP signaling axis, identifying transcriptome signatures in tumors with low/inhibited NMDAR activity that significantly associate with favorable patient prognosis in several cancer types.


Assuntos
Carcinoma Neuroendócrino/genética , Carcinoma Ductal Pancreático/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Fatores de Transcrição de Choque Térmico/genética , Neoplasias Pancreáticas/genética , Proteínas Associadas SAP90-PSD95/genética , Transdução de Sinais , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológico , Carcinoma Neuroendócrino/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Invasividade Neoplásica , Transplante de Neoplasias , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Prognóstico , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais/efeitos dos fármacos , Análise de Sobrevida
3.
Cell Rep ; 15(6): 1144-60, 2016 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-27134166

RESUMO

Therapeutic targeting of tumor angiogenesis with VEGF inhibitors results in demonstrable, but transitory efficacy in certain human tumors and mouse models of cancer, limited by unconventional forms of adaptive/evasive resistance. In one such mouse model, potent angiogenesis inhibitors elicit compartmental reorganization of cancer cells around remaining blood vessels. The glucose and lactate transporters GLUT1 and MCT4 are induced in distal hypoxic cells in a HIF1α-dependent fashion, indicative of glycolysis. Tumor cells proximal to blood vessels instead express the lactate transporter MCT1, and p-S6, the latter reflecting mTOR signaling. Normoxic cancer cells import and metabolize lactate, resulting in upregulation of mTOR signaling via glutamine metabolism enhanced by lactate catabolism. Thus, metabolic symbiosis is established in the face of angiogenesis inhibition, whereby hypoxic cancer cells import glucose and export lactate, while normoxic cells import and catabolize lactate. mTOR signaling inhibition disrupts this metabolic symbiosis, associated with upregulation of the glucose transporter GLUT2.


Assuntos
Inibidores da Angiogênese/uso terapêutico , Resistencia a Medicamentos Antineoplásicos , Neoplasias Intestinais/irrigação sanguínea , Neoplasias Intestinais/metabolismo , Tumores Neuroendócrinos/irrigação sanguínea , Tumores Neuroendócrinos/metabolismo , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/metabolismo , Transdução de Sinais , Neoplasias Gástricas/irrigação sanguínea , Neoplasias Gástricas/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Inibidores da Angiogênese/farmacologia , Animais , Axitinibe , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Glutamina/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Imidazóis/farmacologia , Imidazóis/uso terapêutico , Indazóis/farmacologia , Indazóis/uso terapêutico , Indóis/farmacologia , Indóis/uso terapêutico , Neoplasias Intestinais/tratamento farmacológico , Ácido Láctico/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Modelos Biológicos , Tumores Neuroendócrinos/tratamento farmacológico , Neoplasias Pancreáticas/tratamento farmacológico , Pirróis/farmacologia , Pirróis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Sunitinibe , Regulação para Cima/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA