Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Clin Lab Anal ; 35(6): e23782, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33942374

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a genetic heterogeneous disease with high mortality and poor prognosis. Hyaluronidase 1 (HYAL1) was found to be upregulated in fibroblasts from IPF patients, and overexpression of HYAL1 could prevent human fetal lung fibroblast proliferation. However, the genetic correlation between the HYAL1 and IPF or connective tissue diseases related interstitial lung disease (CTD-ILD) has not been determined. METHODS: A two-stage study was conducted in Southern Han Chinese population. We sequenced the coding regions and flanking regulatory regions of HYAL1 in stage one (253 IPF cases and 125 controls). A statistically significant variant was further genotyped in stage two (162 IPF cases, 182 CTD-ILD cases, and 225 controls). RESULTS: We identified a nonsynonymous polymorphism (rs117179004, T392M) significantly associated with increased IPF risk (dominant model: OR = 2.239, 95% CI = 1.212-4.137, p = 0.010 in stage one; OR = 2.383, 95% CI = 1.376-4.128, p = 0.002 in stage two). However, we did not observe this association in CTD-ILD (OR = 1.401, 95% CI = 0.790-2.485, p = 0.248). CONCLUSION: Our findings suggest that the nonsynonymous polymorphism (rs117179004, T392M) may confer susceptibility to IPF in Southern Han Chinese, but is not associated with susceptibility to CTD-ILD.


Assuntos
Hialuronoglucosaminidase/genética , Fibrose Pulmonar Idiopática/genética , Polimorfismo de Nucleotídeo Único , Idoso , Povo Asiático/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Predisposição Genética para Doença , Humanos , Doenças Pulmonares Intersticiais/genética , Masculino , Pessoa de Meia-Idade
2.
Hum Mutat ; 39(9): 1238-1245, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29920840

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a genetic heterogeneous disease with high mortality and poor prognosis. However, a large fraction of genetic cause remains unexplained, especially in sporadic IPF (∼80% IPF). By systemically reviewing related literature and potential pathogenic pathways, 92 potentially IPF-related genes were selected and sequenced in genomic DNAs from 253 sporadic IPF patients and 125 matched health controls using targeted massively parallel next-generation sequencing. The identified risk variants were confirmed by Sanger sequencing. We identified two pathogenic and 10 loss-of-function (LOF) candidate variants, accounting for 4.74% (12 out of 253) of all the IPF cases. In burden tests, rare missense variants in three genes (CSF3R, DSP, and LAMA3) were identified that have a statistically significant relationship with IPF. Four common SNPs (rs3737002, rs2296160, rs1800470, and rs35705950) were observed to be statistically associated with increased risk of IPF. In the cumulative risk model, high risk subjects had 3.47-fold (95%CI: 2.07-5.81, P = 2.34 × 10-6 ) risk of developing IPF compared with low risk subjects. We drafted a comprehensive map of genetic risks (including both rare and common candidate variants) in patients with IPF, which could provide insights to help in understanding mechanisms, providing genetic diagnosis, and predicting risk for IPF.


Assuntos
Desmoplaquinas/genética , Fibrose Pulmonar Idiopática/genética , Laminina/genética , Receptores de Fator Estimulador de Colônias/genética , Feminino , Predisposição Genética para Doença , Genoma Humano/genética , Estudo de Associação Genômica Ampla , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Mutação de Sentido Incorreto/genética , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Transdução de Sinais/genética
3.
Am J Cancer Res ; 7(9): 1863-1873, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28979809

RESUMO

The aim of this study is to elucidate whether and how miR-107 participates in the modulation of paclitaxel sensitivity in non small cell lung cancer (NSCLC). By qRT-PCR, we found that miR-107 is significantly down-regulated in paclitaxel-resistant A549/Taxol cells compared with corresponding paclitaxel-sensitive counterparts. Overexpression of miR-107 suppresses paclitaxel resistance of A549/Taxol cells through directly inhibiting Bcl-w. Overexpression of miR-107 promotes apoptosis and inhibits proliferation and mobility of A549/Taxol cells under treatment with paclitaxel in vitro. Moreover, miR-107 inhibits in vivo paclitaxel resistance in xenograft model. MiR-107/Bcl-w axis regulates paclitaxel chemoresistance through PI3K-Akt pathway. Our results suggest that up-regulation of miR-107 resensitizes paclitaxel-resistant NSCLC cells by targeting Bcl-w, which reveals a potential mechanism of miR-107 in reversing drug resistance.

4.
Cancer Med ; 6(3): 631-639, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28181425

RESUMO

Pyropheophorbide-α methyl ester (MPPa) was a promising photosensitizer with stable chemical structure, strong absorption, higher tissue selectivity and longer activation wavelengths. The present study investigated the effect of MPPa-mediated photodynamic treatment on lung cancer A549 cells as well as the underlying mechanisms. Cell Counting Kit-8 was employed for cell viability assessment. Reactive oxygen species levels were determined by fluorescence microscopy and flow cytometry. Cell morphology was evaluated by Hoechst staining and transmission electron microscopy. Mitochondrial membrane potential, cellular apoptosis and cell cycle distribution were evaluated flow-cytometrically. The protein levels of apoptotic effectors were examined by Western blot. We found that the photocytotoxicity of MPPa showed both drug- and light- dose dependent characteristics in A549 cells. Additionally, MPPa-PDT caused cell apoptosis by reducing mitochondrial membrane potential, increasing reactive oxygen species (ROS) production, inducing caspase-9/caspase-3 signaling activation as well as cell cycle arrest at G0 /G1 phase. These results suggested that MPPa-PDT mainly kills cells by apoptotic mechanisms, with overt curative effects, indicating that MPPa should be considered a potent photosensitizer for lung carcinoma treatment.


Assuntos
Caspase 3/metabolismo , Caspase 9/metabolismo , Neoplasias Pulmonares/metabolismo , Fármacos Fotossensibilizantes/farmacologia , Porfirinas/farmacologia , Células A549 , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Fotoquimioterapia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...