Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835397

RESUMO

Manoalide provides preferential antiproliferation of oral cancer but is non-cytotoxic to normal cells by modulating reactive oxygen species (ROS) and apoptosis. Although ROS interplays with endoplasmic reticulum (ER) stress and apoptosis, the influence of ER stress on manoalide-triggered apoptosis has not been reported. The role of ER stress in manoalide-induced preferential antiproliferation and apoptosis was assessed in this study. Manoalide induces a higher ER expansion and aggresome accumulation of oral cancer than normal cells. Generally, manoalide differentially influences higher mRNA and protein expressions of ER-stress-associated genes (PERK, IRE1α, ATF6, and BIP) in oral cancer cells than in normal cells. Subsequently, the contribution of ER stress on manoalide-treated oral cancer cells was further examined. ER stress inducer, thapsigargin, enhances the manoalide-induced antiproliferation, caspase 3/7 activation, and autophagy of oral cancer cells rather than normal cells. Moreover, N-acetylcysteine, an ROS inhibitor, reverses the responses of ER stress, aggresome formation, and the antiproliferation of oral cancer cells. Consequently, the preferential ER stress of manoalide-treated oral cancer cells is crucial for its antiproliferative effect.


Assuntos
Estresse do Retículo Endoplasmático , Neoplasias Bucais , Estresse Oxidativo , Humanos , Apoptose , Linhagem Celular Tumoral , Endorribonucleases/metabolismo , Neoplasias Bucais/metabolismo , Neoplasias Bucais/patologia , Proteínas Serina-Treonina Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Antioxidants (Basel) ; 11(11)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36421413

RESUMO

Physapruin A (PHA), a Physalis peruviana-derived withanolide, exhibits antiproliferation activity against oral and breast cancer cells. However, its potential antitumor effects in combined treatments remain unclear. This investigation focused on evaluating the impact of the combined treatment of ultraviolet-C with PHA (UVC/PHA) on the proliferation of oral cancer cells. The UVC-caused antiproliferation was enhanced by combination with PHA in oral cancer (Ca9-22 and CAL 27) but not normal cells (SG), as evidenced by ATP detection, compared with UVC or PHA alone. UVC/PHA showed a greater extent of subG1 increase, G2/M arrest, annexin-V-assessed apoptosis, caspase 3/7 activation, and reactive oxygen species (ROS) in the UVC or PHA treatment of oral cancer compared to normal cells. Moreover, the mitochondrial functions, such as mitochondrial superoxide bursts and mitochondrial membrane potential destruction, of oral cancer cells were also enhanced by UVC/PHA compared to UVC or PHA alone. These oxidative stresses triggered γH2AX and 8-hydroxyl-2'-deoxyguanosine-assessed DNA damage to a greater extent under UVC/PHA treatment than under UVC or PHA treatment alone. The ROS inhibitor N-acetylcysteine reversed all these UVC/PHA-promoted changes. In conclusion, UVC/PHA is a promising strategy for decreasing the proliferation of oral cancer cells but shows no inhibitory effect on normal cells.

3.
Semin Cancer Biol ; 83: 269-282, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-33127466

RESUMO

Noncoding RNAs (ncRNAs) regulation of various diseases including cancer has been extensively studied. Reactive oxidative species (ROS) elevated by oxidative stress are associated with cancer progression and drug resistance, while autophagy serves as an ROS scavenger in cancer cells. However, the regulatory effects of ncRNAs on autophagy and ROS in various cancer cells remains complex. Here, we explore how currently investigated ncRNAs, mainly miRNAs and lncRNAs, are involved in ROS production through modulating antioxidant genes. The regulatory effects of miRNAs and lncRNAs on autophagy-related (ATG) proteins to control autophagy activity in cancer cells are discussed. Moreover, differential expression of ncRNAs in tumor and normal tissues of cancer patients are further analyzed using The Cancer Genome Atlas (TCGA) database. This review hypothesizes links between ATG genes- or antioxidant genes-modulated ncRNAs and ROS production, which might result in tumorigenesis, malignancy, and cancer recurrence. A better understanding of the regulation of ROS and autophagy by ncRNAs might advance the use of ncRNAs as diagnostic and prognostic markers as well as therapeutic targets in cancer therapy.


Assuntos
MicroRNAs , Neoplasias , Estresse Oxidativo , RNA Longo não Codificante , Antioxidantes/metabolismo , Autofagia/genética , Humanos , MicroRNAs/genética , Recidiva Local de Neoplasia , Neoplasias/genética , Neoplasias/terapia , Estresse Oxidativo/genética , RNA Longo não Codificante/genética , RNA não Traduzido/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Antioxidants (Basel) ; 10(7)2021 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-34356350

RESUMO

The anticancer effect of pomegranate polyphenolic extract POMx in oral cancer cells has rarely been explored, especially where its impact on mitochondrial functioning is concerned. Here, we attempt to evaluate the proliferation modulating function and mechanism of POMx against human oral cancer (Ca9-22, HSC-3, and OC-2) cells. POMx induced ATP depletion, subG1 accumulation, and annexin V/Western blotting-detected apoptosis in these three oral cancer cell lines but showed no toxicity to normal oral cell lines (HGF-1). POMx triggered mitochondrial membrane potential (MitoMP) disruption and mitochondrial superoxide (MitoSOX) generation associated with the differential downregulation of several antioxidant gene mRNA/protein expressions in oral cancer cells. POMx downregulated mitochondrial mass, mitochondrial DNA copy number, and mitochondrial biogenesis gene mRNA/protein expression in oral cancer cells. Moreover, POMx induced both PCR-based mitochondrial DNA damage and γH2AX-detected nuclear DNA damage in oral cancer cells. In conclusion, POMx provides antiproliferation and apoptosis of oral cancer cells through mechanisms of mitochondrial impairment.

5.
Cancers (Basel) ; 13(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34070049

RESUMO

Combined treatment is increasingly used to improve cancer therapy. Non-ionizing radiation ultraviolet-C (UVC) and sinularin, a coral Sinularia flexibilis-derived cembranolide, were separately reported to provide an antiproliferation function to some kinds of cancer cells. However, an antiproliferation function using the combined treatment of UVC/sinularin has not been investigated as yet. This study aimed to examine the combined antiproliferation function and explore the combination of UVC/sinularin in oral cancer cells compared to normal oral cells. Regarding cell viability, UVC/sinularin displays the synergistic and selective killing of two oral cancer cell lines, but remains non-effective for normal oral cell lines compared to treatments in terms of MTS and ATP assays. In tests using the flow cytometry, luminescence, and Western blotting methods, UVC/sinularin-treated oral cancer cells exhibited higher reactive oxygen species production, mitochondrial superoxide generation, mitochondrial membrane potential destruction, annexin V, pan-caspase, caspase 3/7, and cleaved-poly (ADP-ribose) polymerase expressions than that in normal oral cells. Accordingly, oxidative stress and apoptosis are highly induced in a combined UVC/sinularin treatment. Moreover, UVC/sinularin treatment provides higher G2/M arrest and γH2AX/8-hydroxyl-2'deoxyguanosine-detected DNA damages in oral cancer cells than in the separate treatments. A pretreatment can revert all of these changes of UVC/sinularin treatment with the antioxidant N-acetylcysteine. Taken together, UVC/sinularin acting upon oral cancer cells exhibits a synergistic and selective antiproliferation ability involving oxidative stress-dependent apoptosis and cellular DNA damage with low toxic side effects on normal oral cells.

6.
Antioxidants (Basel) ; 9(11)2020 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-33202766

RESUMO

Withaferin A (WFA), a Withania somnifera-derived triterpenoid, is an anticancer natural product. The anticancer effect of nonionizing radiation such as ultraviolet-C (UVC) as well as the combined treatment of UVC and WFA is rarely investigated. Low dose UVC and/or WFA treatments (12 J/m2 and/or 1 µM) were chosen to evaluate antioral cancer cell line effects by examining cytotoxicity, cell cycle disruption, apoptosis induction, and DNA damage. For two cancer cell lines (Ca9-22 and HSC-3), single treatment (UVC or WFA) showed about 80% viability, while a combined treatment of UVC/WFA showed about 40% viability. In contrast, there was noncytotoxicity to normal oral cell lines (HGF-1). Compared to single treatment and control, low dose UVC/WFA shows high inductions of apoptosis in terms of flow cytometric detections for subG1, annexin V, pancaspase changes as well as Western blotting for detecting cleaved poly (ADP-ribose) polymerase (c-PARP) and caspase 3 (c-Cas 3) and luciferase assay for detecting Cas 3/7 activity. Low dose UVC/WFA also showed high inductions of oxidative stress and DNA damage in terms of flow cytometric detections of reactive oxygen species (ROS), mitochondrial superoxide (MitoSOX) generation, and membrane potential (MitoMP) destruction, γH2AX and 8-oxo-2'deoxyguanosine (8-oxodG) types of DNA damages. For comparison, low dose UVC/WFA show rare inductions of annexin V, Cas 3/7 activity, ROS, MitoSOX, and MitoMP changes to normal oral HGF-1 cells. Therefore, low dose UVC/WFA provides a novel selectively killing mechanism to oral cancer cells, suggesting that WFA is a UVC sensitizer to inhibit the proliferation of oral cancer cells.

7.
Antioxidants (Basel) ; 9(9)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32948007

RESUMO

Ultraviolet-C (UVC) irradiation provides an alternative radiotherapy to X-ray. UVC sensitizer from natural products may improve radiotherapy at low cytotoxic side effects. The aim of this study is to assess the regulation for oral cancer cell proliferation by a combined treatment of UVC and our previously reported anti-oral cancer natural product (ethyl acetate extract of Nepenthes adrianii × clipeata; EANA). The detailed possible UVC sensitizing mechanisms of EANA such as effects on cell proliferation, cell cycle, apoptosis, and DNA damage are investigated individually and in combination using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTS) assay, flow cytometry, and western blotting at low dose conditions. In a 24 h MTS assay, the low dose EANA (5 µg/mL) and low dose UVC (12 J/m2) individually show 80% and combinedly 57% cell proliferation in oral cancer Ca9-22 cells; but no cytotoxicity to normal oral HGF-1 cells. Mechanistically, low dose EANA and low dose UVC individually induce apoptosis (subG1 accumulation, pancaspase activation, and caspases 3, 8, 9), oxidative stress (reactive oxygen species, mitochondrial superoxide, and mitochondrial membrane potential depletion), and DNA damage (γH2AX and 8-hydroxy-2'-deoxyguanosine). Moreover, the combined treatment (UVC/EANA) synergistically induces these changes. Combined low dose treatment-induced antiproliferation, apoptosis, oxidative stress, and DNA damage were suppressed by the ROS scavenger N-acetylcysteine. In conclusion, UVC/EANA shows synergistic antiproliferation, oxidative stress, apoptosis, and DNA damage to oral cancer cells in an oxidative stress-dependent manner. With the selective killing properties of low dose EANA and low dose UVC, EANA provides a novel UVC sensitizing agent to improve the anti-oral cancer therapy.

8.
Environ Toxicol ; 35(6): 673-682, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31995279

RESUMO

Discovering drug candidates for the modulation of metastasis is of great importance in inhibiting oral cancer malignancy. Although most pomegranate extract applications aim at the antiproliferation of cancer cells, its antimetastatic effects remain unclear, especially for oral cancer cells. The aim of this study is to evaluate the change of two main metastasis characters, migration and invasion of oral cancer cells. Further, we want to explore the molecular mechanisms of action of pomegranate extract (POMx) at low cytotoxic concentration. We found that POMx ranged from 0 to 50 µg/mL showing low cytotoxicity to oral cancer cells. In the case of oral cancer HSC-3 and Ca9-22 cells, POMx inhibits wound healing migration, transwell migration, and matrix gel invasion. Mechanistically, POMx downregulates matrix metalloproteinase (MMP)-2 and MMP-9 activities and expressions as well as epithelial-mesenchymal transition (EMT) signaling. POMx upregulates extracellular signal-regulated kinases 1/2 (ERK1/2), but not c-Jun N-terminal kinase (JNK) and p38 expression. Addition of ERK1/2 inhibitor (PD98059) significantly recovered the POMx-suppressed transwell migration and MMP-2/-9 activities in HSC-3 cells. Taken together, these findings suggest to further test low cytotoxic concentrations of POMx as a potential antimetastatic therapy against oral cancer cells.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Movimento Celular/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Metaloproteinase 2 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neoplasias Bucais/patologia , Extratos Vegetais/farmacologia , Punica granatum/química , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Regulação para Baixo , Humanos , Neoplasias Bucais/metabolismo , Regulação para Cima
9.
Onco Targets Ther ; 12: 5227-5239, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31308694

RESUMO

Introduction: The genus Nepenthes of the pitcher plants contains several natural and hybrid species that are commonly used in herbal medicine in several countries, but its possible use in cancer applications remains unknown as yet. Methods: In this study, we investigated the antioral cancer properties using ethyl acetate extracts of the Nepenthes hybrid (Nepenthes ventricosa x sibuyanensis), namely EANS. The bioactivity was detected by a MTS-based cell proliferation assay and flow cytometric or Western blot analysis for apoptosis, oxidative stress, and DNA damage. Results: Treatment for 24 hrs of EANS inhibited all three types of oral cancer cells that were tested (Ca9-22, CAL 27, and SCC9), with just a small difference to normal oral cells (HGF-1). This antiproliferation was inhibited by pretreatments with the reactive oxygen species (ROS) scavenger N-acetylcysteine (NAC), and the apoptosis inhibitor (Z-VAD). EANS treatment increased the subG1 population and it also dose- and time-dependently induced annexin V- and pancaspase-detected apoptosis as well as cleaved caspases 3 and 9 overexpressions in the oral cancer cells (Ca9-22). After EANS treatment of Ca9-22 cells, intracellular ROS and mitochondrial superoxide (MitoSOX) were overexpressed and mitochondrial membrane potential (MMP) was disrupted. Moreover, DNA damages such as γH2AX and 8-oxo-2'-deoxyguanosine (8-oxodG) were increased after EANS treatment to Ca9-22 cells. The EANS-induced effects (namely, oxidative stress, apoptosis, and DNA damage) were suppressed by ROS scavenger. Conclusion: Our findings demonstrated that EANS inhibits ROS-mediated proliferation against oral cancer cells.

10.
Environ Toxicol ; 34(8): 891-901, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31157515

RESUMO

Nepenthes plants are regarded as a kind of Traditional Chinese Medicine for several diseases but its anticancer activity remain unclear. The subject of this study is to evaluate the antiproliferation effects on oral cancer cells by Nepenthes plants using ethyl acetate extract of Nepenthes adrianii x clipeata (EANA). Cell viability was detected using MTS assay. Its detailed mechanisms including cell cycle, apoptosis, oxidative stress, and DNA damage were explored by flow cytometry or western blotting. For 24 hours EANA treatment, five kinds of oral cancer cells (CAL 27, Ca9-22, OECM-1, HSC-3, and SCC9) show IC50 values of cell viability ranging from 8 to 17 µg/mL but the viability of normal oral cells (HGF-1) remains over 80%. Subsequently, CAL 27 and Ca9-22 cells with high sensitivity to EANA were chosen to investigate the detailed mechanism. EANA displays the time course and concentration effects for inducing apoptosis based on flow cytometry (subG1 and annexin V analyses) and western blotting [cleaved poly (ADP-ribose) polymerase (c-PARP)]. Oxidative stress and DNA damage were induced by EANA treatments in oral cancer cells through reactive oxygen species (ROS), mitochondrial membrane potential disruption, mitochondrial superoxide, and γH2AX. All these changes of EANA treatments in oral cancer cells were reverted by the ROS scavenger N-acetylcysteine pretreatment. Therefore, EANA induces preferential killing, apoptosis, and DNA damage against oral cancer cells through oxidative stress.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Neoplasias Bucais/tratamento farmacológico , Estresse Oxidativo , Traqueófitas , Acetatos , Antineoplásicos Fitogênicos/uso terapêutico , Apoptose , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Bucais/metabolismo , Fitoterapia , Extratos Vegetais/farmacologia , Poli(ADP-Ribose) Polimerases/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...