Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Zhongguo Zhong Yao Za Zhi ; 49(5): 1144-1153, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38621961

RESUMO

Agaricus blazei is a rare medicinal and edible fungus with a crispy taste and delicious flavor. Both fruiting body and mycelium are rich in polysaccharides, sterols, terpenoids, peptides, lipids, polyphenols, and other active ingredients, which have strong pharmacological activities such as anti-tumor, lipid-lowering, glucose-lowering, immunomodulation, optimization of intestinal flora, and anti-oxidation. Therefore, it is a kind of fungal resource with a great prospect of edible and medicinal development. Among the reported chemical components of A. blazei, blazeispirol is a series of sterol compounds unique to A. blazei, which has a spiral structure and is different from classical steroids. It is an important active ingredient found in the mycelium of A. blazei and has significant hepatoprotective activity. It can be used as a phylogenetic and chemotaxonomic marker of A. blazei strains and is considered an excellent lead compound for drug development. According to the skeleton structure characteristics, the 17 discovered blazeispirol compounds can be divided into two types: blazeispirane and problazeispirane. In order to further explore the resource of blazeispirol compounds of A. blazei, the discovery, isolation, structure, biological activity, and biosynthetic pathways of blazeispirol compounds of A. blazei were systematically reviewed. Besides, the metabolic regulation strategies related to the fermentation synthesis of blazeispirol A by A. blazei were discussed. This review could provide a reference for the efficient synthesis and development of blazeispirol compounds, the research and development of related drugs and functional foods, and the quality improvement of A. blazei and other medicinal and edible fungi resources and derivatives.


Assuntos
Agaricus , Neoplasias , Filogenia , Polissacarídeos , Esteroides , Agaricus/química , Agaricus/metabolismo
2.
J Control Release ; 353: 591-610, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36503071

RESUMO

Intracellular Methicillin-Resistant Staphylococcus aureus (MRSA) remains a major factor of refractory and recurrent infections, which cannot be well addressed by antibiotic therapy. Here, we design a cellular infectious microenvironment-activatable polymeric nano-system to mediate targeted intracellular drug delivery for macrophage reprogramming and intracellular MRSA eradication. The polymeric nano-system is composed of a ferrocene-decorated polymeric nanovesicle formulated from poly(ferrocenemethyl methacrylate)-block-poly(2-methacryloyloxyethyl phosphorylcholine) (PFMMA-b-PMPC) copolymer with co-encapsulation of clofazimine (CFZ) and interferon-γ (IFN-γ). The cellular-targeting PMPC motifs render specific internalization by macrophages and allow efficient intracellular accumulation. Following the internalization, the ferrocene-derived polymer backbone sequentially undergoes hydrophobic-to-hydrophilic transition, charge reversal and Fe release in response to intracellular hydrogen peroxide over-produced upon infection, eventually triggering endosomal escape and on-site cytosolic drug delivery. The released IFN-γ reverses the immunosuppressive status of infected macrophages by reprogramming anti-inflammatory M2 to pro-inflammatory M1 phenotype. Meanwhile, intracellular Fe2+-mediated Fenton reaction together with antibiotic CFZ contributes to increased intracellular hydroxyl radical (•OH) generation. Ultimately, the nano-system achieves robust potency in ablating intracellular MRSA and antibiotic-tolerant persisters by synchronous immune modulation and efficient •OH killing, providing an innovative train of thought for intracellular MRSA control.


Assuntos
Antibacterianos , Macrófagos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Interferon gama , Macrófagos/imunologia , Metalocenos/uso terapêutico , Staphylococcus aureus Resistente à Meticilina/imunologia , Polímeros/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/imunologia , Nanoestruturas/uso terapêutico
3.
Org Lett ; 24(45): 8283-8288, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36331137

RESUMO

In this work, we successfully explored an unexpected dehydrogenation triggered by Pd/Cu-catalyzed C(sp3)-H arylation and intramolecular C-N coupling of amides to synthesize the bioactive 1,2-dihydroquinoline scaffold with good regioselectivity and good compatibility of functional groups. This strategy provides an alternative route to realize molecular complexity and diversity from simple and readily available molecules via multiple C-H bond activation. Preliminary mechanistic studies demonstrated that ß,γ-dehydrogenation is triggered by the arylation of the C(sp3)-H bond and the intramolecular C-N coupling.


Assuntos
Amidas , Paládio , Amidas/química , Paládio/química , Catálise , Estrutura Molecular
4.
Biomaterials ; 281: 121358, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34979416

RESUMO

The overexpression of glutathione (GSH) in cancer cells has long been regarded as the primary obstacle for reactive oxygen species (ROS)-involved anti-tumor therapies. To solve this issue, a ferric ion and selenite-codoped calcium phosphate (Fe/Se-CaP) nanohybrid here is fabricated to catabolize endogenous GSH, instead of directly deleting it, to trigger a ROS storm for tumor suppression. The selenite component in Fe/Se-CaP can catabolize GSH to superoxide anion (O2•-) and hydroxyl radicals (•OH) via cascade catalytic reactions, elevating oxidative stress while destroying antioxidant system. The doped Fe can further catalyze the soaring hydrogen peroxide (H2O2) originated from O2•- to •OH via Fenton reactions. Collectively, Fe/Se-CaP mediated self-augmented catabolism dynamic therapy finally induces apoptosis of cancer cells owing to the significant rise of ROS and, combined with CaP adjuvant, evokes adaptive immune responses to suppress tumor progression, providing an innovative train of thought for ROS-involved anti-tumor therapies.


Assuntos
Glutationa , Peróxido de Hidrogênio , Glutationa/metabolismo , Peróxido de Hidrogênio/metabolismo , Ferro , Espécies Reativas de Oxigênio/metabolismo , Ácido Selenioso , Superóxidos/metabolismo
5.
Nanoscale ; 13(8): 4420-4431, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33616147

RESUMO

Traditional methods of depleting tumor-associated myeloid cells via chemotherapy can easily lead to the re-recruitment of them, eventually resulting in chemo-resistance and presenting obstacles in immunotherapy. Herein, we report a nano-educator (NE) that when loaded with all trans retinoic acid (ATRA) and anti-PD-1 antibodies (aPD-1) instructs myeloid cells to assist T cells towards revitalizing anti-PD-1 therapy. In vivo, ATRA converts myeloid-derived suppressor cells (MDSCs) into dendritic cells (DCs), which are essential for anti-PD-1 therapy, while intervening in the polarization of macrophages. Furthermore, aPD-1-armed T cells reboot anti-tumor immunity after suppression relief, which exposes tumor-specific antigens and in turn promotes the maturation of transformed DCs. The nano-platform provides shelter for vulnerable immunomodulatory agents and durable drug release to stimulate intensive immune modulation. We established three types of tumor-bearing mice models with different myeloid cell contents to show the spatiotemporal complementarity of ATRA and aPD-1. The NE re-educates the tumor's guard to assist T cells in enhanced immunotherapy, broadening the application of aPD-1 in the treatment of anti-PD-1-resistant tumors.


Assuntos
Células Mieloides , Células Supressoras Mieloides , Animais , Linhagem Celular Tumoral , Imunoterapia , Macrófagos , Camundongos
6.
Biomaterials ; 245: 119986, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32229331

RESUMO

Diabetes is an increasing health problem and associated with inflammatory complications that seriously affects the quality of life and survival of patients. Carbon monoxide (CO), owing to its anti-inflammatory and anti-apoptotic properties, has become a potential therapeutic molecule for the treatment of autoimmune diseases. Here, we constructed a mesoporous silica-based biomimetic CO nanogenerator (mMMn), which was loaded with manganese carbonyl and camouflaged with macrophage membrane. Driven by the active targeting of macrophage membrane to inflammatory sites, the as-designed mMMn could effectively accumulate in pancreatic tissue of type 1 diabetic mice, which was established by consecutive administration of streptozotocin (STZ). It was found that the local reactive oxygen species (ROS) within pancreas could trigger the continuous CO release from mMMn, which greatly ameliorated diabetes in mice with improved blood glucose homeostasis by alleviating inflammatory responses and inhibiting ß-cells apoptosis. The exogenous CO targeting to pancreatic tissue paves a novel way for the treatment of type 1 diabetes.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Animais , Apoptose , Biomimética , Glicemia , Monóxido de Carbono , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 1/tratamento farmacológico , Humanos , Camundongos , Qualidade de Vida , Estreptozocina
7.
Adv Mater ; 32(16): e2000376, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32134530

RESUMO

Traditional phototherapies face the issue that the insufficient penetration of light means it is difficult to reach deep lesions, which greatly reduces the feasibility of cancer therapy. Here, an implantable nitric oxide (NO)-release device is developed to achieve long-term, long-distance, remote-controllable gas therapy for cancer. The device consists of a wirelessly powered light-emitting diode (wLED) and S-nitrosoglutathione encapsulated with poly(dimethylsiloxane) (PDMS), obtaining the NO-release wLED (NO-wLED). It is found that NO release from the NO-wLED can be triggered by wireless charging and the concentration of produced NO reaches 0.43 × 10-6 m min-1 , which can achieve a killing effect on cancer cells. In vivo anticancer experiments exhibit obvious inhibitory effect on the growth of orthotopic cancer when the implanted NO-wLED is irradiated by wireless charging. In addition, recurrence of cancer can be prevented by NO produced from the NO-wLED after surgery. By illumination in the body, this strategy overcomes the poor penetration and long-wavelength dependence of traditional phototherapies, which also provides a promising approach for in vivo gas therapy remote-controlled by wireless charging.


Assuntos
Neoplasias do Colo/terapia , Óxido Nítrico/metabolismo , Fototerapia/instrumentação , Tecnologia sem Fio , Animais , Linhagem Celular Tumoral , Neoplasias do Colo/metabolismo , Fontes de Energia Elétrica , Camundongos
8.
Biomaterials ; 223: 119472, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31499254

RESUMO

Inflammation during photothermal therapy (PTT) of tumor usually results in adverse consequences. Here, a biomembrane camouflaged nanomedicine (mPDAB) containing polydopamine and ammonia borane was designed to enhance PTT efficacy and mitigate inflammation. Polydopamine, a biocompatible photothermal agent, can effectively convert light into heat for PTT. Ammonia borane was linked to the surface of polydopamine through the interaction of hydrogen bonding, which could destroy redox homoeostasis in tumor cells and reduce inflammation by H2 release in tumor microenvironment. Owing to the same origin of outer biomembranes, mPDAB showed excellent tumor accumulation and low systemic toxicity in a breast tumor model. Excellent PTT efficacy and inflammation reduction made the mPDAB completely eliminate the primary tumors, while also restraining the outgrowth of distant dormant tumors. The biomimetic nanomedicine shows potentials as a universal inflammation-self-alleviated platform to ameliorate inflammation-related disease treatment, including but not limited to PTT for tumor.


Assuntos
Amônia/química , Boranos/química , Neoplasias da Mama/tratamento farmacológico , Hidrogênio , Fototerapia/métodos , Animais , Materiais Biocompatíveis , Células COS , Chlorocebus aethiops , Feminino , Gases , Células HeLa , Homeostase , Humanos , Inflamação , Neoplasias Mamárias Experimentais/tratamento farmacológico , Membranas Artificiais , Camundongos , Nanomedicina/métodos , Transplante de Neoplasias , Oxirredução , Recidiva , Temperatura , Microambiente Tumoral
9.
Biomaterials ; 217: 119303, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31271859

RESUMO

Here, a highly cooperative liquid metal nanoparticle-enzyme (LM@GOX) was constructed for combinational starvation/photothermal therapy of tumor. It was found that the enzyme activity of glucose oxidase (GOX) could be strengthened along with the increased temperature within a given range and its optimal activity is around about 43-60 °C. Utilizing the photothermal conversion ability of liquid metal (LM), the GOX catalytic efficiency could be photo-controlled with improved starvation therapeutic efficiency. Furthermore, due to the accelerating blood flow during the photothermal therapy (PTT), the hypoxic situation in tumor tissues could also be relieved, which would contribute to conquering the hypoxia-suppressed GOX catalysis. In the meanwhile, the severe thermo-resistance of tumor cells during PTT process could be overcome by GOX induced decrease of adenosine triphosphate (ATP) and heat shock proteins (HSPs) level, eventually leading to an improved therapeutic effect of PTT. Both in vitro and in vivo studies proved that LM@GOX could significantly inhibit the growth of solid tumor under NIR illumination by a win-win cooperative starvation/photothermal therapy.


Assuntos
Glucose Oxidase/metabolismo , Hipertermia Induzida , Luz , Nanopartículas Metálicas/química , Neoplasias/terapia , Fototerapia , Trifosfato de Adenosina/metabolismo , Animais , Antineoplásicos/farmacologia , Peso Corporal/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Feminino , Glucose/farmacologia , Proteínas de Choque Térmico/metabolismo , Humanos , Raios Infravermelhos , Nanopartículas Metálicas/ultraestrutura , Camundongos Endogâmicos BALB C , Imagem Óptica , Carga Tumoral/efeitos dos fármacos
10.
Nano Lett ; 19(8): 5568-5576, 2019 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-31262183

RESUMO

Tumor cells adapt to reactive oxygen species (ROS) attacking by launching DNA damage repairing mechanisms such as nucleotide pool sanitizing enzyme mutt homologue 1 (MTH1) to mitigate the oxidatively induced DNA lesions, which could greatly limit the therapeutic efficiency of current oxidation therapy. Here, an amplified oxidative damage strategy for tumor therapy was proposed that was focused not only on the enhancement of ROS generation but also the inhibition of subsequent MTH1 enzyme activity simultaneously. In our formulation, mesoporous silica-coated Prussian blue nanoplatforms (PB@MSN) with excellent catalase-like activity and drug loading capability were employed to encapsulate MTH1 inhibitor TH287, followed by the modification of tetraphenylporphrin zinc (Zn-Por) via metallo-supramolecular coordination (PMPT), where Zn-Por behaved as photodynamic and fluorescence imaging agents, as well as acid-responsive gatekeepers. The intelligent PMPT nanosystems could induce the decomposition of H2O2 to relieve the hypoxic tumor environment, thus elevating the generation of singlet oxygen for improved oxidative damage. In the meantime, controllable-released TH287 from pores could hinder MTH1-mediated damage repairing process and aggravate oxidative damage, thereby resulting in cellular toxicity as well as tumor growth inhibition.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Enzimas Reparadoras do DNA/antagonistas & inibidores , Estresse Oxidativo/efeitos dos fármacos , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Fármacos Fotossensibilizantes/uso terapêutico , Porfirinas/uso terapêutico , Pirimidinas/uso terapêutico , Animais , Neoplasias da Mama/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Inibidores Enzimáticos/administração & dosagem , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Células MCF-7 , Camundongos Nus , Imagem Óptica , Monoéster Fosfórico Hidrolases/metabolismo , Fotoquimioterapia , Fármacos Fotossensibilizantes/administração & dosagem , Porfirinas/administração & dosagem , Pirimidinas/administração & dosagem , Espécies Reativas de Oxigênio/metabolismo
11.
ACS Nano ; 13(8): 8618-8629, 2019 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-31246413

RESUMO

Natural nanoparticles have been extensively studied due to their diverse properties and easy accessibility. Here, the nanoparticles extracted from cuttlefish ink (CINPs) with significant antitumor efficacy are explored. These CINPs, with spherical morphology, good dispersibility, and biocompatibility, are rich in melanin and contain a variety of amino acids and monosaccharides. Through the activation of mitogen-activated protein kinase (MAPK) signaling pathway, CINPs can efficiently reprogram tumor-associated macrophages (TAMs) from immune-suppressive M2-like phenotype to antitumor M1-like phenotype. Besides, under near-infrared (NIR) irradiation, CINPs exhibit high photothermal effect and tumor cell killing ability, which make them a potential candidate in photothermal therapy (PTT) of tumor. In vivo, CINPs can increase the proportion of M1 macrophages and foster the recruitment of cytotoxic T lymphocytes (CTLs) to tumors, leading to reduced primary tumor growth and lung metastasis. In combination with their photothermal effect, which can induce tumor-specific antigens release, CINPs could almost completely inhibit tumor growth accompanied by more active immune responses. Collectively, these CINPs described here can provide both tumor immunotherapy and PTT, implying that CINPs are promising for tumor treatment.


Assuntos
Imunoterapia , Tinta , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Decapodiformes/química , Humanos , Hipertermia Induzida , Indóis/química , Indóis/farmacologia , Macrófagos/efeitos dos fármacos , Camundongos , Fototerapia , Linfócitos T Citotóxicos/efeitos dos fármacos
12.
ACS Nano ; 13(5): 5523-5532, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-31046229

RESUMO

Carbon monoxide (CO) is regarded as a potential therapeutic agent with multiple beneficial functions for biomedical applications. In this study, a versatile CO nanogenerator (designated as PPOSD) was fabricated and developed for tumor therapy and anti-inflammation. Partially oxidized tin disulfide (SnS2) nanosheets (POS NSs) were decorated with a tumor-targeting polymer (polyethylene glycol-cyclo(Asp-d-Phe-Lys-Arg-Gly), PEG-cRGD), followed by the loading of chemotherapeutic drug doxorubicin (DOX) to prepare polymer@POS@DOX, or PPOSD. After injected intravenously, PPOSD could selectively accumulate in tumor tissue via the cRGD-mediated tumor recognition. Upon 561 nm laser irradiation, the POS moiety in PPOSD can photoreduce CO2 to CO, which significantly sensitized the chemotherapeutic effect of DOX. The POS in PPOSD can also act as a photothermal agent for effective photothermal therapy (PTT) of the tumor upon 808 nm laser irradiation. Furthermore, the generated CO can simultaneously decrease the inflammatory reaction caused by PTT. Blood analysis and hematoxylin-eosin staining of major organs showed that no obvious systemic toxicity was induced after the treatment, suggesting good biosafety of PPOSD. This versatile CO nanogenerator will find great potential for both enhanced tumor inhibition and anti-inflammation.


Assuntos
Monóxido de Carbono/farmacologia , Inflamação/tratamento farmacológico , Neoplasias/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Dióxido de Carbono/química , Monóxido de Carbono/química , Linhagem Celular Tumoral , Dissulfetos/química , Dissulfetos/farmacologia , Doxorrubicina/farmacologia , Humanos , Inflamação/patologia , Camundongos , Nanopartículas/química , Neoplasias/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Biomaterials ; 207: 76-88, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959408

RESUMO

Various negative effects accompanying with the instability of bare liquid metal (LM) nanoparticles, including undesirable spontaneous coalescence, continuous photothermal performance deterioration and difficult multi-step functionalization, severely hinder its applications in biomedical area. In this study, we proposed a new concept of immobilized liquid metal nanoparticles based on a surface mesoporous silica coating strategy (LM@MSN). Strikingly, it was found that unsteady and vulnerable LM nanoparticles after immobilization exhibited enhanced stabilization and sustainable photothermal performance even with a long and repeated light irradiation in acidic environments. Moreover, integrating the properties of easy surface functionalization and high drug loading efficiency from silica shell, immobilized LM nanoparticle was further used for photothermal involved combinational therapy. The classical anticancer drug doxorubicin (DOX) was encapsulated in pores of silica shell and the hyaluronic acid (HA) was decorated on LM@MSN to construct LM@MSN/DOX@HA for tumor targeted combination therapy. Both in vitro and in vivo studies proved that LM@MSN/DOX@HA could significantly inhibit solid tumor growth under near infrared (NIR) irradiation by synergistic photothermal/chemotherapy.


Assuntos
Antineoplásicos/uso terapêutico , Doxorrubicina/uso terapêutico , Nanopartículas Metálicas/química , Antineoplásicos/química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Porosidade , Dióxido de Silício/química
14.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 30(6): 641-4, 2013 Dec.
Artigo em Chinês | MEDLINE | ID: mdl-24327137

RESUMO

OBJECTIVE: To detect the underlying genetic defect in two Chinese families with hereditary multiple exostoses and provide genetic counseling. METHODS: Potential mutations in EXT1 and EXT2 genes in the probands were detected by direct sequencing of PCR-amplified exons. Suspected mutations were verified in all available family members and 200 unrelated healthy controls. RESULTS: A heterozygous frameshift mutation c.346_356delinsTAT in exon 1 of EXT1 and a heterozygous deletion mutation c.2009-2012del(TCAA) in exon 10 of EXT1 were respectively detected in affected members from the two families. The same mutations were not detected in unaffected members and 200 unrelated healthy controls. No mutations in EXT2 were detected in the two families. CONCLUSION: Two novel mutations of EXT1 have been detected in association with hereditary multiple exostoses in two Chinese families. Above results have provided a basis for genetic counseling for the two families and expanded the spectrum of EXT1 mutations.


Assuntos
Exostose Múltipla Hereditária/enzimologia , Exostose Múltipla Hereditária/genética , N-Acetilglucosaminiltransferases/genética , Deleção de Sequência , Adolescente , Adulto , Idoso , Povo Asiático/genética , Criança , Pré-Escolar , Análise Mutacional de DNA/métodos , Feminino , Heterozigoto , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...